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Unified Modeling Language (UML) is the most comprehensive and widely accepted 

object-oriented modeling language due to its multi-paradigm modeling capabilities 

and easy to use graphical notations, with strong international organizational support 

and industrial production quality tool support. However, there is a lack of precise 

definition of the semantics of individual UML notations as well as the relationships 

among multiple UML models, which often introduces incomplete and inconsistent 

problems for software designs in UML, especially for complex systems. Furthermore, 

there is a lack of methodologies to ensure a correct implementation from a given UML 

design. The purpose of this investigation is to verify and validate software designs in 

UML, and to provide dependability assurance for the realization of a UML design.

In my research, an approach is proposed to transform UML diagrams into a se­

mantic domain, which is a formal component-based framework. The framework I 

proposed consists of components and interactions through message passing, which are 

modeled by two-layer algebraic high-level nets and transformation rules respectively. 

In the transformation approach, class diagrams, state machine diagrams and activity 

diagrams are transformed into component models, and transformation rules are ex­

tracted from interaction diagrams. By applying transformation rules to component 

models, a (sub)system model of one or more scenarios can be constructed. Various 

techniques such as model checking, Petri net analysis techniques can be adopted to 

check if UML designs are complete or consistent. A new component called property
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parser was developed and merged into the tool SAM Parser, which realize (sub)system 

models automatically. The property parser generates and weaves runtime monitoring 

code into system implementations automatically for dependability assurance. The 

framework in the investigation is creative and flexible since it not only can be ex­

plored to verify and validate UML designs, but also provides an approach to build 

models for various scenarios. As a result of my research, several kinds of previous 

ignored behavioral inconsistencies can be detected.
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CHAPTER 1 

INTRODUCTION

1.1 Problem

Modeling languages play a critical role in software development process. One of 

the major functionalities of modeling languages is to provide a complete and valid 

system model based on which various techniques such as model checking, theorem 

proving, and refinement are applied to improve quality and efficiency in terms of cost 

and time. Last several decades have witnessed the emergence of more than 50 mod­

eling languages [51]. Currently, Unified Modeling Language (UML for short) [120] 

is the most comprehensive and accepted object-oriented, multi-paradigm modeling 

language. UML supports the multi-view approach, i.e. artifacts created in the de­

velopment process for various views are modeled by various kinds of UML concepts. 

More specifically, class diagrams specify static structure of systems; statechart dia­

grams describe behavior of individual classifier; activity diagrams emphasize control 

flows and object flows for coordinating low-layer behaviors, rather than which clas­

sifier owns these behaviors; interaction diagrams including sequence diagrams and 

communication diagrams realize use cases by describing interactions of objects to 

complete a task.

Generally speaking, UML designs capture system requirements, establish abstract 

models, and serve as the corner stone for system implementation. Therefore, soft­

ware quality, costs, adherence to schedule largely depends on the “quality” of UML 

designs we build. More specifically UML designs should meet these characteristics:

1
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completeness, validness, and consistency. Completeness indicates that all important 

system aspects should have been captured before entering the next phrase. Validness 

means UML designs should satisfy expected system properties that are not specified 

by UML designs. Consistency implies there is no conflict information among UML 

designs. Unfortunately such goal is hard to achieve due to characteristic of modeling 

languages as well as characteristics of UML.

First, the lack of precise semantics hinders further analysis, and brings misunder­

standing of models, which cause errors in the final system model. System requirements 

and models should be easy to understand, not only for developers, but also for clients 

and end users who generally have little knowledge of modeling languages and soft­

ware engineering. So modeling languages are generally informal languages that lack 

precise and unambiguous semantics. In other words, it is possible that peoples such 

as clients, developers and designers may have different, even conflict understanding 

for the same concept, artifact, or model. Although UML provides a good balance be­

tween understandability and formal syntax, its semantics is defined by plain natural 

language, which is in general ambiguous, and confusing.

Second, inconsistency is introduced by the multi-view and multi-notation approach. 

UML supports the multi-view and multi-notation approach, which helps designers 

focus on individual viewpoint so that the models are more manageable and less error- 

prone. However, inconsistencies arise because “the models overlap -  that is they 

incorporate elements which refer to common aspects of the system under development 

-  and make assertions about these aspects which are not jointly satisfiable as they 

stand, or under certain conditions” [147]. The detection of inconsistencies is not easy 

due to the multi-notations.

Third, system complexity, project pressure of cost and schedule may ignore impor­

tant aspects and scenario, and may introduce undetected errors as well as conflict 

information. W ith the progress of software development technology, systems to be

2
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built are becoming more and more complex, and more and more people acting as dif­

ferent roles are involved in system development process. W ith heavy time pressure to 

market and limited resource, there are more chances to establish a poor system model 

in terms of undetected errors. Even worse, some important aspects and scenario may 

be ignored in the final model since they are originally thought as trivial and there is 

no time or cost to model these “trivial” aspects.

Fourth, system requirements from which system models are built may contain con­

flict information since requirements from stakeholders of different interests are related, 

and even on opponent sides.

All above matters make it hard to build a valid, complete, and consistent UML 

designs. In this investigation, I proposed an approach to verify and validate UML 

designs. Since a “correct” UML design does not guarantee a “correct” system im­

plementation due to the error-prone realization process, a tool was developed for 

dependability assurance to generate runtime monitor code to verify system proper­

ties during program execution.

1.2 Approach

The approach to verify and validate UML designs is portrayed in Fig. 1.

The core part of the approach is the proposed component-based framework, which 

can be explored to model systems consisting of components that interact with each 

other through message passing. This framework provides a formal way to model com­

ponents and interactions in Petri nets and transformation rules respectively. A whole 

(sub)system model can be constructed by integrating component models together ac­

cording to interaction models, just like the assembly of numerous small interlocking 

and tesellating pieces to produce a complete picture.

Given UML designs of a system, we can transform various UML diagrams, i.e. 

class diagrams, state machine diagrams, activity diagrams and interaction diagrams

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

UML Diagrams

class
diagrams

state machine 
diagrams

activity
diagrams

interaction
diagrams

Feedback Formalization Extraction

Analysis Techniques
(Model Checking,
Petri Net Analysis, etc.)

Algebraic High 
Level nets

Transformation
Rules

Rewriting

Component-based
FrameworkSystem Nets 

(AHL-Nets)
Consistency
Rules

System
Properties

Property Parser Structure & Behavior Parser
SAM Parser

weaved into
Aspect! Java-=■ ArchJava

Figure 1: Overview of Investigation Approach

into corresponding parts of the framework according to given rules. More specifi­

cally, class diagrams, state machine diagrams, and activity diagrams are formalized 

and integrated into component models, and transformation rules can be extracted 

from interaction diagrams to specify the possible message passing between various 

component models.

Although various analysis techniques such as model checking, theorem proving, and 

Petri net analysis techniques can be explored to analyze system models constructed in 

the framework, we chose model checking to verify system models against system prop­

erties and detect inconsistency among UML designs. Petri net analysis techniques 

maybe used as a complement to detect some specific inconsistencies.

A correct and consistent UML design cannot guarantee a complete and correct 

system realization because of the informal and error-prone implementation process. 

A component -  Property Parser was developed and plugged into the tool SAM

4
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Parser for dependability assurance that automatically realize system models con­

structed from the framework. For given properties, Property Parser generates 

runtime monitor code automatically, which is weaved into functionality code through 

aspect-oriented programming. Therefore, properties can be verified during program 

execution.

The remainder of this dissertation will trace each part of Fig. 1, demonstrating how 

to verify and validate UML designs and how to generate and weave runtime monitor 

code for dependability assurance.

1.3 Benefits

The contributions and benefits that follow from this investigation are enumerated 

in Table 1, along with an explanation of how each of them are realized. The summary 

chapter 6 gives a much more detailed explanation of each benefit or contribution and 

how each was realized in the dissertation.

Table 1: Benefits of Dissertation Research
Benefit Explanation

1 Development of a formal 
component-based frame­
work to model systems

Components and their interactions are modeled by 
Petri nets and transformation rules, respectively. 
The (sub) system model can be constructed by ap­
plying transformation rules to components accord­
ing to analysis needs.

2 Formalization of UML dia­
grams

Class diagrams and state machine diagrams are 
formalized by algebraic specifications and Petri 
nets, respectively.

3 Development of a process to 
integrate UML designs into 
a system model

Application of the proposed framework to UML 
designs

4 Development of a process to 
validate and verify UML de­
signs

Model checking and other Petri net analysis tech­
niques are explored to analyze system models ob­
tained from UML designs.

5 Development of a tool to 
implement system models 
and validate the implemen­
tation automatedly

Incorporation of runtime verification technique 
and aspect-oriented programming in the tool

5
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1.4 A ssum ptions and Scopes

It is assumed that:

1. This investigation is limited to the UML 2.0.

2. UML supporting CASE tools check initial specification consistency (within an 

individual diagram) and compliance to UML syntax. The application of my 

work on invalid UML specifications would be unpredictable.

3. This investigation only focuses on a subset of UML depicted in Fig. 2. Since the 

investigation becomes too complicated when UML diagrams are used in broad 

situations as indicated in UML whitebook [120], we only consider the most 

popular usage of involved diagrams, which are summarized as the following:

M essage Object StructureFeature

Interaction O

0,,1
PropertyC lass

Region State

Event Transition
— ad— ifer

A ssociationOperationActivity

Action

CreateObj ectActi onInvocationAction DestroyObjectAction A ccept EventAction

CallAction SendSignalAction SendObjectAction Accept CallAction

CallO perationAction

Figure 2: Scope: a Subset of UML

•  Each non-primitive (see section 4.4) class operation is described by an 

activity;

6
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• The actions in activities are restricted to those actions as showed in the 

figure. Other actions such as link related actions and variable related 

actions are represented as invocation actions due to the formalization of 

class diagrams based on algebraic specifications. Some other actions such 

as ReadExtentAction, RaiseException are just ignored in the current work.

• Only MessageTrigger is allowed in current work. Other triggers such as 

TimeTrigger and ChangeTrigger are not considered.

• Time and timing concepts in interaction diagrams are just ignored in the 

current work since they are out of modeling power of non-timed Petri nets.

Additionally, we assume that each object in interaction diagrams refers to a 

class declared in the class diagram. There is a statechart diagram for each class 

to describe its behavior. Furthermore, each activity in statechart diagrams is 

specified by an activity diagram.

4. There are different kinds of inconsistencies [94, 95]: horizontal v.s. vertical 

inconsistency, inter- v.s. intra-inconsistency, and syntactic v.s. semantic in­

consistency. My investigation is limited to horizontal, semantic, and inter­

inconsistency.

1.5 Thesis Overview

Currently, UML is the most popular object oriented modeling language. As a 

multi-paradigm language, UML can enjoy the benefits by modeling various system 

aspects in different UML diagrams. Unfortunately, UML designs also inherit the 

inconsistency problems -  multiple UML designs may contain conflict information. 

Things are even worse since a correct and consistent UML design does not guarantee 

a valid system implementation. My dissertation describes the proposed framework 

through which UML designs are validated and verified, and the approach to generate 

and weave runtime monitor code automatically for dependability assurance.
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Chapter 2 briefly illustrates Algebraic High Level nets, category theory, and trans­

formation system as a background to understanding the proposed framework. The 

related works are distributed to the following three chapters to cover specific topics.

The component-based system modeling framework is given in Chapter 3. The 

framework consists of several parts: the way to model components and interactions, 

and the approach to compose system models by applying transformation rules.

Chapter 4 shows the approach to verify and validate UML designs by exploring 

the framework described in Chapter 3. More specifically, component models are 

constructed from class diagrams, state machine diagrams, and activity diagrams, 

while transformation rules are extracted from interaction diagrams. Then different 

analysis techniques can be adopted to analyze the system net that are constructed 

by applying transformation rules.

The automated system implementation from system models is given in Chapter 5. 

The tool presented in this chapter can be used to implement automatically system 

models constructed in Chapter 4, and more importantly, to validate the implementa­

tion by adopting runtime verification technique and aspect-oriented programming.

Chapter 6 contains the conclusions from this investigation and provides recommen­

dation for future research.

8
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CHAPTER 2 

THEORETIC FOUNDATION

2.1 Introduction

It was stated in Chapter 1 that the proposed framework integrates different theories 

seamlessly, i.e. Petri nets, category theory, and graph transformation.

Petri nets [112], introduced by Dr. Carl Adam Petri in his PhD thesis (Kom- 

munikation mit Automaten), is a formal and graphical appealing language that is 

appropriate for modeling concurrent and distributed systems. A main motivation for 

the use of Petri nets in concurrent and distributed systems modeling is the possibility 

to formally state and decide certain desirable system properties, such as liveness and 

boundedness. There are in general two kinds of Petri nets: low-level Petri nets and 

high-level Petri nets. Although they have the same expressive power, high level Petri 

nets provide a more succinct and manageable system description.

Category theory [26] deals in an abstract way with mathematical structures and 

relationships among them. Categories are an abstract mathematical construct con­

sisting of category objects and category arrows. In general, category objects are the 

objects in the category of interest while category arrows define a morphism from the 

internal structure of one category object to another. Instead of focusing merely on the 

individual objects possessing a given structure, as mathematical theories have tradi­

tionally done, category theory emphasizes the morphisms -  the structure-preserving 

processes -  between these objects. In this research, category objects of interests are

9
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algebraic specifications, Petri nets, and category arrows are specification morphisms 

and Petri net morphisms.

In graph theory, graph transformation/rewriting is a system of rewriting for graphs. 

During the application of graph rewriting to a graph, subgraphs are replaced according 

to the rules of a rewrite system. There are several approaches to graph rewriting, 

one of them is the algebraic approach, which is based upon category theory. Actually 

the algebraic approach is divided into at least three sub approaches: the double- 

pushout approach (DPO), the single-pushout approach (SPO) and (more recently) 

the pullback approach. In this research, DPO approach is chosen to change Petri nets 

due to the strong constraints on applying rules to rewrite graphs.

In this chapter, Section 2 gives a brief introduction of Petri nets, including 

Place/Transition Nets and algebraic high-level nets. Category theory and algebraic 

high-level net transformation systems are illustrated in Sections 3 and 4 respectively.

2.2 Petri N ets

In this section, I introduce two kinds of Petri nets: Place/Transition nets (a variant 

of low level Petri nets) and algebraic high-level nets (a variant of high level Petri nets).

2.2.1 P lace/T ransition  N ets

Definition 1 (P lace/T ransition  N ets) A place/transition net is a 5-tuple 

(P , T, F, W, M 0), where

• P  is a finite and non-empty set of places,

• T  is a finite and non-empty set of transitions disjoint from P, i.e. P  D T  =  0,

• F  is the set of arcs, F  C (P  x T) U (T x P),

• W  is the arc weight function, W  : F  -—>• N;

• M0 e  M is the initial marking, where M is the set of markings, M =  {M  : 

P  — ► N}.

10
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Places, transitions, and arcs are the basic structures in Petri nets. Places model 

system status; transitions indicate actions a system may take; while arcs illustrate 

data flows as well as control flows. A place can contain data called tokens. A marking 

of a Place/Transition net is a distribution of tokens over all places. The initial marking 

Mo defines the initial system status.

For convenience, we introduce symbols *p (p*, respectively) for a place p G P  

to illustrate the set of transitions t such that (t,p) G F  ((p , t ) G F, respectively). 

Similarly, we can define *t (t*, respectively) for a transition t  G T.

Petri nets are executable. More specifically, transitions act on input tokens by a 

process known as firing. A transition is enabled if it can fire, i.e., there are enough 

tokens in every input place. When a transition fires, it consumes tokens from input 

places, performs some processing task, and places a specified number of tokens into 

each output place. It does this atomically, i.e. in one single non-preemptible step. 

This is the dynamic semantics of Petri nets, which are specified formally by the 

following definitions.

D efin ition  2 Let {P. T, F, W, M0) be a Place/Transition net. A transition is enabled 

at a marking M  if  and only if  (iff for short): Vp G* t : M (p) > W (p,t).

A transition t leads (can be fired) from a marking M  to a marking M ' (M[t > M ' 

for short) iff t is enabled at M  and: Vp G P  : M'(p) =  M(p) — W(p, t ) +  W (t,p).

Execution of Petri nets is nondeterministic. In other words, multiple transitions 

can be enabled at the same time, and any one of which can fire. This characteristic 

makes Petri nets suitable for modeling concurrent behavior of distributed systems.

Figure 3 shows a Place/Transition net for a consumer and producer sys­

tem. The places, transitions, arcs are denoted by circles, rectangles, and 

arrows, respectively. A dot indicates a token in a specific place. The 

weight of a arc is described by the integer along an arrow (1 by default). 

The initial marking is (idle=l, ready=0, storage=0, accepted=0, waiting

11
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storage
sendproduce accept

consume

•  waitingidle

ConsumerProducer

Figure 3: Petri Net of Consumer-Producer System

=2) (abbreviated as (1,0,0,0,2)). Then the following is a firing sequence:

(l,0,0,0,2)[produce>(0,l,0,0,2)[send>l,0,3,0,2)[accept>(l,0,l,l,l)[consume>(l,0,l,0,2)

2.2.2 A lgebraic H igh Level N ets

High level Petri nets extend the basic Place/Transition net formalism by distin­

guishing tokens. More specifically the values of tokens in high level Petri nets are 

typed. Algebraic high level nets [47], a variant of high level Petri nets, use algebra to 

define token types. This section is intended to introduce basic concepts of signature, 

algebraic specification, algebra and Algebraic high level nets.

Given a set P, the free commutative monoid (jP®,A,©) is generated by P  such 

that A is the neutral elements and the binary operation © satisfies associativity and 

commutativity. Elements u> of the free commutative monoid P® over some set P  can 

be represented as ui = Ep^p(cp • p) with coefficients cp € N. They can be considered 

as multi-sets. In the following, we let A be the empty multi-set, and define binary 

operation © as uq © uj2 =  Ep€p((cp +  dp) • p). The inverse operation © of © is defined 

as uj\ © u>2 =  Epep((cp — dp) ■ p) if u>2 < (*>i, he. for any p G P, dp < cp.

A signature S IG  = (S , OP) consists of a set S  of sorts, and a set OP  of constant 

and operation symbols. Each operation symbol O is indexed by a pair (a ,  s), a  e  S* 

and s E S  denoted by Oa>s- (J is called the argument sorts and s the range sort of

12
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operator o. Let X s be a finite set of variables of sort s. X  — Uses ^ s

set of variables w.r.t. the signature SIG.  The set Top,s(X)  of terms of sort s is

inductively defined by:

• c TopA x );

•  0( t i ,  ...,tn) E Top,s( X ) for all operation symbol 0  E O P  with O : si...sn —» s 

and all terms ti E TOPiSl(X), ..., tn E T0 p,Sn(X).

For convenience, we introduce symbol Top(X)  =  Uses Top A X )  to denote the set 

of all terms, and symbol TOPs = TqpAA) t°  denote the set of terms not containing 

variables (also called ground terms).

A SIG-algebra A  = (S a , OPA), providing an interpretation for a signature S IG  =  

(S, OP), consists of two families Sa = (As)ses and OPa = (0a)o€OP where A s are 

sets for all s E S, called domain of A, and Oa '■ A a\ x ... x A sn —> A a is a function for 

each operation symbol O : s i  x ... x sn —» s. Given an assignment ass : X  —> A  with 

ass(x) E A s where x E X s and s E S. The extended assignment, or simply extension 

ass : T o p ( X )® —» A® of the assignment ass is recursively defined by:

• aSs(x) = ass(x) for all variables x E X \

• ass(o( tl , ..., tn ) =  OA(aSs(tl), ...,ass(tn)) for all 0 ( t l , ..., tn ) E ToP{X).

• for any cu = Y<k{ck • tk) where k,Ck E N, and tk E T o p (X ), ass{u) = S^kAk • 

ass(tk)).

An algebraic specification S P E C  = (SIG, E)  consists of a signature S I G  and a set 

of equations E  w.r.t. the signature SIG.  In the context of this paper, only positive 

conditional equations are considered. An SPEC-algebra is an SIG-algebra satisfying 

all equations in E.

D efinition 3 (Algebraic High-Level N et [47]) An algebraic high-level  n e t

(AHL-net) N  is a 9-tuple (SPEC,  X ,  P, T,  type, cond, pre, post, A)  where

13
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• S P E C  — (S I G ; E) is an algebraic specification with the signature S IG  =  

(S, OP) and a set of eguations E;

• X  is a set of variables w.r.t. the specification SP E C ;

• P  is a finite set of elements called Places;

• T  is a finite set of elements called Transitions disjoint from P  (P fl T  = 0);

• type : P  —► S, assigning each place p G P  a sort type(p) G S;

• cond : T  —► CPf in(E Q N S {S IG \X )) ,  assigning each transition a finite set of

equations w.r.t. the signature S IG  and the set of variables X ,  where CP denotes 

the power set;

•  pre,post : T  —> @ p£p(ToP,type(p)(X) x {p})®;

•  A  is a SPEC-algebra.

Similar to Place/Transition nets, symbols *p, p \  *t, t* denote the set of pre- and 

post- transitions/places for a given place/transition, respectively. A marking of an 

AHL-net is denoted by M e  {(o,p)|a G A type(p),p G P}®. Let a:Var(t) —» A  be a 

variable assignment where Var[t) is the set of variables occurred in cond(t), pre(t) 

and post{t) for any transition t E T. Transition t  is enabled with the binding a  under 

the marking M  if the transition condition cond(t) is validated in A under function a  

and a(pre(t)) < M. Then the marking M '  =  M Q a(pre(t))  @a(post(t)) is computed 

by firing the transition t  with the binding a  under the marking M.

Figure 4 [151] shows an AHLN for a consumer and producer system. The algebraic 

specification declares 4 types (nat, bool, data, and queue), 2 constants (err of data 

type, nil of queue type), and 5 operations. Each place has an associated type, and 

each transition has a set of equations. By default, the equations in a transition like 

co always hold. The “weight” associated with an arc is a multi-set of terms defined 

in the related algebra.

14
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s o r t s :  n a t ,  bool ,  d a t a ,  queue  
opns:  e r r :  d a t a ,  nil:  queue

inq: d a t a  q u e u e  queue  
deq: qu eue  queue  
f i r s t :  qu eue  d a t a  
e m p ty :  queu e  bool
le ngt h :  que ue  n a t

eqris: de q (n i l ) =n i l
d e q ( inq (x ,n i l ) )= n i l
deq ( inq (x , in q( y , q) ) )= i nq (x ,d eq (y ,q ) )
f i r s t ( n i l ) = e r r
f i r s t ( i n q ( x , n i l ) ) = x
f i r s t ( n q ( x , i n q ( y , q ) ) ) = f i r s t ( i n q ( y , q ) )
e m p t y ( n i l ) = t r u e
e m p t y ( i n q ( x , q ) ) = f a l s e
1engthCni 1 )=0
l e n g t h ( i n q ( x , q ) ) = l e n g t h ( q ) + 1

data(length(q)<=n- 1 )=true)

deq(q)
cose re

date data

Figure 4: Algebraic High-Level Net of Consumer-Producer System

2.3 C ateg o ry  T h eo ry

All definitions in this section are from [26],

D efin ition  4 (C atego ry ) A category ip consists of a class \<p\ (whose elements are 

called objects of the category), and a class of arrows between any two objects (called 

morphism), which satisfies following conditions:

1. Morphism Composition: (A —> B) o (B  —> C) = {A —> C);

2. Identity morphism 1 a € <p(A, A) exists for any object A;

3. Associativity axiom: given morphisms f : A - + B , g : B - + C , h : C ^ D ,  then 

h o  ( g o f )  = ( hog)  o f .

4- Identity axiom: given morphisms f  : A  —> B, g : B  —> C, then 1b 0 f  = f ,  

go  1B = g.

15
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Exam ple 1 The category S P E C  consists of algebraic specifications (S, OP, E )  

and of specification morphisms f  — ( fs  '■ S I  —> S2, fo p  : 0P 1  —> 0 P 2 ) : S P E C  1 —>■ 

SP E C 2 satisfying f{o  : si...sn -> s) = fo p {0 ) : fs (s i) ...fs (sn) -»• fs (s ) and such 

that f t  (E l)  C E2 where f t  is the unique extension of f  to terms and equations 

[45]. Specification morphism f  is injective i f  functions f s  and fo p  are injective. 

Specification morphism f  is strict if, given an arbitrary positive conditional equation 

e, we have ft(e ) E E2, then e E E l .

D efinition 5 (Functor) A functor F  from a category SP E C 1 to a category 

S P E C 2 is a mapping, which maps a object, a morphism of the category SP E C 1  

to a object, a morphism of the category S P E C 2  respectively and satisfies following 

conditions:

1. F(A1  —»■ A2) is a morphism from  F(A1) to F (A 2 ) of the category S P E C 2  ;

2. For every pair of morphisms f  : A  —> A' and g : A! —» A ": F(g  o / )  =

3. For every object A  of the category SP E C 1 : ^ (1^) =  If {A)',

There is a special kind of functor, called forgetful functor, which leaves the objects 

and the arrows as they are, but forget the extra structure or algebraic properties. 

Let /  : SP E C 1  —> S P E C 2 be a specification morphism of category S P E C  where 

S P E C i = (Si,O Pi,E i) for i =  1,2. The corresponding forgetful functor VfspEC '■ 

C A T (SP E C 2) C A T (S P E C l)  is defined as V } s p e c ( A 2) =  A1 where A1 is an 

object of the category of all SPEC l-algebras denoted by C A T(SPEC l) such that:

A l s = A2fs(s) for all s E S\

Oai =  fo p (0 )A2 for all O E OP\

16
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for all SIG2-homomorphism h! : A2 —> B2 : VfspEc(h') =  h : A1 —> B1 with

hs =  fr/s(s) for all s e  S I

With the forgetful functor, we can define the category of algebraic high-level nets. 

Let A4 be SPECi-algebras for i= l,2 . A generalized homomorphism F  : A \ —> A 2 

consists of a pair /  =  ( f s p e c , /a )  where J s p e c  is a morphism of category S P E C  

and J a - A i - *  VfspEc(A 2 ) is a SPEC 1-homomorphism. Composition of generalized 

homomorphisms /  =  U s p e c J a ) '■ A, —>■ A 2 and g -  (gspEC,9A) : A 2 ->• A 3 is given 

by: go  f  — (gspEC 0  f s p e c , VfspEc{9 A) 0 /a )  : Ai —► A3.

The category A H LN ET of algebraic high-level nets consists of all AHL-nets N 

as objects and quadruples /  =  (J s p e c , fp , f r ,  / a )  as morphisms where

• f s P E C  • (S I, OP  1, E l)  —> (S 2, O P 2, E2) is a specification morphism of category 

SPEC ;

•  f p  : T 1  —> T2 and f p : P I —* P2 are functions;

• ( f s p e c , / a )  : A 1  —> A2 is a generalized homomorphism and : A l  —» 

VfspEc(A2) is an isomorphism in C A T(SPECl).

such that the following diagram commutes componentwise.

p re l
lJ>f i n ( E Q N S ( S I G l ) )

' / i n  ( / s / g )

0>/< n ( E Q i V 5 ( 5 / G 2 ) )

condl
• t i :

cond2

p o s tl
. ( T o p i ( X I )  x P I ) ab

f r (flIO x /p)ab

pre  2
-T 2I

post2
: ( T o p 2 ( X 2 )  x P 2 ) a

D efin ition  6 (P ro d u c ts )  Aet C A T  be a category and A ,B  two objects of C A T . 

A product of A  and B  is, by definition, a triple (P,Pa ,Pb ) where P  is an object of

17
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CAT, and pa ■ P  — ► A  and pB ■ P  — »• B are morphisms, and for any other similar 

triple (Q , Qa '■ Q — > A ,qB : Q — > B) there exists a unique morphism r : Q — > P  

such that qA= PA0 r and qB = pB o r.

P BP A

D efin ition  7 (C o P ro d u c ts ) Let C A T  be a category and A ,B  two objects of CAT. 

A product of A  and B  is, by definition, a triple (P,Pa ,Pb ) where P  is an object of 

CAT, and pa ■ A  — > P  and pB : B  — > P  are morphisms, and for any other similar 

triple (Q,qA ■ A  — > Q,qB : B  — ► Q) there exists a unique morphism r : P  — > Q 

such that qA — ro p A  and qB = r o pB.

P a P b

In category theory, a pullback is the limit of a diagram consisting of two morphisms 

with a common codomain. The duo notation of pullback is that of pushout, just like 

the relationship between product and coproduct. The form definition of pullback and 

pushout are given in the following.

D efin ition  8 (P u llback) Consider two morphisms f  : A  — > C and g : B  — ► C 

in a category CAT. A pullback of ( f , g) is a triple (P, f , gf) such that P  is an 

object of C A T  and f  : P  — > B , g' : P  — ► A are morphisms of C A T  satisfying 

f  o g' — g o f ;  and for every other similar triple (Q, f " , g"), there exists a unique 

morphism q : Q — > P such that f "  =  f  o q and g" = g' o q.

18
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D efin ition  9 (P u sh o u t)  Consider two morphisms f  : C  — > A  and g : C  — > B  

in a category CAT. A pushout of ( f , g) is a triple (P, f ,  g') such that P  is an 

object of C A T  and f  : B  — > P, g' : A  — > P  are morphisms of C A T  satisfying 

g' o f  = f  o g; and for every other similar triple (Q, f " , g"), there exists a unique 

morphism q : P  — ► Q such that f "  = qo f  and g" =  qo g '.

2.4 Algebraic High-Level N et Transform ation System s

Graphs are a very useful means to describe complex structures and systems, and 

to model concepts and ideas in a direct and intuitive way. These structures are 

often augmented by formalisms that add to the static description a further dimension 

modeling the evolution of systems via any kind of transformation of such graphical 

structures. By applying a transformation rule to replace a subgraph, the original 

graph is evolved into a new graph. Therefore, graph transformation can be exploited 

to specify the graph evolution formally.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

This section is intended as an introduction to Algebraic High-Level Net Transfor­

mation Systems, a specific application of graph transformation theory to Algebraic 

High-Level Nets. Algebraic High-Level Net Transformation Systems were first pro­

posed by Padberg et al. in [128]. Therefore, we adopt their concepts, symbols, and 

definitions in the rest of this section.

An HLR-category (CAT, M ) consists of a category CAT together with a distin­

guished class M  of morphisms, which is a subset of the class of morphisms in category 

CAT . The objects in CAT are called high-level structures (HL-structures for short).

(AHLNET,MAffXiv) 1S a HLR-category where

M a h l n  =  { /  =  (fsPEC, fp , f r ,  f A) \ f  is a morphism of A H LNET, J s p e c  is strict 

injective and f p , f r  injective }

M a h l n  denotes the class of morphisms used in the definition of the productions. By 

chosing injective morphisms, the relation of interface and left (right) side is restricted 

to a somehow unique way.

Definition 10 (P roduction and Derivation)

•  A produ ction  p = (L <— K  —> R) in an HLR-category (C A T ,M ) consists of 

a pair of objects (L,R), called left- and right-hand side, respectively, an object 

K , called a gluing object or interface, and two morphisms K  —» L and K  —> R  

belonging to the class M,

• Given a production p as above and an object C together with a morphism K  —> 

C . A d irect d eriva tio n  from an object G to an object H  via p (written 

p:G =>- H ) is given by two pushout diagrams (1) and ( 2 )  in the category C A T  :

L-6------------------- K------------------ - R

20
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The morphism L  —» G, respectively R  —> H  are called occurrence of L in G, 

respectively, R  in H . C is called the pushout complement.

• A derivation sequence G =>* H  from G to H  is either G = H  (isomorphism), 

or a sequence of n > 1 direct derivations: G = Go G\ =>• ... => Gn =  H  via 

(pi,...,pn)-

The gluing condition is introduced to construct pushout complement in order to 

achieve a constructive view. More specifically, the gluing condition states how to 

delete some part while still obtaining a well-defined HL-structure as pushout com­

plement. Due to the space limit, we cannot give the gluing condition for the cate­

gory AH LNET. More detailed information of gluing condition and construction of 

pushout complement can be found in [128]. We just want to point out that the gluing 

condition for A H LN ET is equivalent to a pushout of AHLNET. More specifically, 

if two morphisms f : K  —> L  and g:L —> G of category A H LN ET with /  € M Ah l n  

meet the gluing condition, then the pushout complement C  exists. On the other hand, 

if the diagram (1) in the definition of production is a pushout such that morphism 

K  —> L  € M a h l n , then morphism K  L  and L  —> G satisfy the gluing condition.

Definition 11 (AH L-net Transform ation System ) An AHL-net transforma­

tion system A T S  = (S ,F ) based on an HLR-category (A H L N E T , M a h l n ) is given 

by an object S  of A H L N E T , called the initial HL-structure, a set of productions P . 

The language of an AHL-net transformation system A T S , denoted by L (A T S ), is a 

set of AHL-nets derived from S  via a sequence of productions, i.e. L (A T S) = {N  

| A  is an AHL-net such that there is a sequence of productions pi,...,pm £ P  with 

S  => N  via p i,...,pm}.

Our definition of AHL-net transformation system is a little different from the de­

finition given in [128] since we do not care about terminal objects derived from the 

initial HL-structure. W hat we are interested is a subset of derived HL-structures
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via some productions. In order to describe derivations over a set of productions, the 

following concepts are introduced.

D efinition 12 (Independence) Given two productions p = (L K  —► R ) and pi 

= (I! <— K ' —> R') in an HLR-system, a derivation sequence G => H  => X  via p,p' 

given by the following pair of double-pushouts is called sequentially independent, if 

there are morphisms L' —> C and R  —> C' such that L' —> C  —> H  = L' —» H  and 

R  ^  C' —> H  = R  H.

■H

Given productions p =  (L <— K  —»• R) and p' = (L’ <— K ' —> R') in an AHL-net 

transformation system the production p+ p' =  {L + L' <— K + K '  —> R + R ')  is called a 

parallel production of p and //, provided there are binary coproducts L + L ', K  + K ', 

and R + R ' that are guaranteed by the characteristics of category A H LN ET . A direct 

derivation G => X  via a parallel production p + p1 is called a parallel derivation. The 

following theorem defines the relationship between parallel derivations and sequential 

independent productions.

D efinition 13 (Parallelism  Theorem ) In any HLR-system based on a H LR1- 

category (C A T, M ) the following propositions hold:

•  Syn th esis. Given a sequentially independent derivation sequence G => H  => 

X  via (p,p')  there is a synthesis construction leading to a parallel derivation 

G =+ X  via p  +  p '.

• A na lysis. Given a parallel derivation G => X  via p + p' there is an analysis 

construction leading to two sequentially independent derivation sequences G => 

H  =+ X  via (p+l) and G =+ H ' =>■ X  via (pf ,p).

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

The sequential independent derivation sequence G => H  =$■ X  via p and p' actually 

indicates that the occurrences of L  in G and V  in C  do not interfere with each 

other, in the sense that nothing is deleted that other production needs. Therefore, 

the sequentially independent derivations can be sequentialized in any order without 

affecting the final result [44]. Therefore, given a sequential independence derivation 

sequence G =  G0 => Gi G2 =*►...=» Gn =  H  via pl,...,pn, we may write G H  

over a production set P  — {p l,...,p n } , or more specifically G =>• H  is a parallel 

derivation over P  according to parallelism theorem if the corresponding coproducts 

exist.

2.5 Sum m ary

As we have discussed in the previous chapter, the proposed framework integrates 

multiple techniques seamlessly: algebraic specifications, Petri nets, category theory, 

and transformation systems. This chapter gives a brief introduction for each of them 

as the background knowledge for the following chapters.
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CHAPTER 3 

COMPONENT-BASED SYSTEM MODELING

FRAMEWORK

3.1 Introduction

Currently the most popular support in industry for component-based frameworks 

appears to be COM+ and CORBA. Unfortunately, components in these frameworks 

lack a precise semantics probably due to their focus on system implementation, which 

makes it difficult to reason about this kind of systems. Many formal methods have 

been proposed to model and analyze component based systems, including Piccola 

Calculus [116], Abstract Behavior Types [6], and Eiffel Language [60]. In this chapter, 

we use Petri nets as the underlying formal method, and present a component modeling 

framework.

One particular concern in component-based systems is the component modeling. 

The generic component modeling, presented in this paper, has been mainly motivated 

by the ideas in [148] for “tiered component framework” , and by the concepts of “nets 

and rules as tokens” for Petri nets [79,152,153]. In [148], component frameworks are 

organized into multiple layers, and two layers often suffice in most cases. Blackbox 

frameworks accept “plug-in” components without modifications to the framework. 

The architecture can be extended further: a component framework itself can be slot­

ted into a higher tier framework tha t regulates interactions. Such an idea is adopted 

in our work to separate component functionalities from message pool management 

and required properties such as responsiveness, scaleability, security, and reliability.
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More specifically, the internal behavior is captured by a function net whereas message 

pool management and required properties are modeled by component nets in which 

function nets serve as tokens.

Although components have been the predominant focus of research, they address 

only one aspect of component-based software development. Another important as­

pect is interactions among components, i.e. connectors. Connectors are sometimes 

deliberately modeled as components (connection components in Rapide [101]). In my 

work, in order to make the distinction clearer, we use a different technique -  trans­

formation rules [128] to model connectors. Although the main purpose of adopting 

transformation rules is to model connectors, they can also be explored to refine com­

ponent nets in multiple ways to add additional functionalities such as creation and 

destruction of components.

This chapter introduce the proposed framework for component-based system mod­

eling. Components’ internal behaviors captured by function nets, are wrapped by 

component nets, which not only deal with message pool management with other 

components, but also model non-functional component requirements. A set of com­

ponent nets are composed into a (sub)system model by applying transformation rules. 

Such an approach is flexible, and makes the reuse and maintenance of components 

and connectors easier since connectors and components are independent from each 

other in the framework.

This chapter is organized as the follows: Section 2 outlines related works. Section 

3 explains the framework informally through a dining philosopher example. The 

component model is described in section 4, while transformation rules are defined 

and classified in section 5. The integration approach and analysis techniques are 

illustrated in section 6 and 7, respectively. Finally a summary is given.
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3.2 R elated Work

Different modeling languages have been proposed to model component-based sys­

tems during last century, such as Unified Modeling Languages (UML), Cadena [66], 

Embedded Systems Modeling Language (ESML) [86], and Ptolemy II [28] etc.. 

Among them, Petri nets [112] draw attention since they are a simple, graphic based 

but formal modeling language, which is suitable to model concurrent and distributed 

systems.

The ability to compose Petri nets is fundamental to component-based system mod­

eling. In the research literature, there are other ways to compose Petri nets to form 

a system model. One of them is to construct algebras of Petri nets over constants 

and compositional operators as in [115,130]. In their work, labeled Petri nets are 

extended with interfaces (public places and transitions) through which components 

communicate with the external environment. Another way to compose Petri nets is 

through place fusion [18,91], transition fusion [17], or both [34]. However, place fusion 

and transition fusion are very tightly coupled, which cannot decide the enabling of a 

transition locally, and even worse violate the modular principle of incremental system 

development. The last way to compose Petri nets is based on category theory [99] [11]. 

Unlike our work, there is no explicit separation among component models and their 

interaction models, which violates reusability and maintainability.

Among the previous works, the works of Padberg [125-127] based on category 

theory and Sibertin-Blanc [143,144] based on arc fusion are the closest to ours. Pad­

berg et al. specified a component as a model specification with an import interface 

IM P , an export interface E X P ,  and a body BO D  connected by an embedding mor­

phism imp : IM P  —► BO D  and an substitution morphism exp : E X P  —> BOD. 

IM P , E X P ,  and BO D  are objects of Place/Transition net category. Three mod­

ule operations Disjoint Union, Union, and Composition are defined to provide flat 

and hierarchical composition semantics for Place/Transition nets. Unlike our work,
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they focused on low level Petri nets with markings as basic objects, and composi­

tion of components is always well-defined by importing and exporting functionalities, 

while we focus on concurrent distributed systems interacting with each other through 

message exchange.

Blanc [143,144] proposed another Petri net based formalism for modeling, analysis 

and simulation of systems: Cooperative net and communication net, both of which 

can model complicated distributed systems as a set of components that have their 

own internal structures and behaviors, and also communicate with each other through 

message passing. Each component is a cooperative/communication net. Component 

composition is achieved through arc fusion, a looser coupling compared with place 

and transition fusion. Although the enabling of a transition can be judged locally, the 

firing of a transition is defined globally. Even worse, there is a structural dependence 

among components due to the potential structural reference in transition actions. 

More specifically, one component has to refer to other components’ internal places 

for the purpose of communication, which is in general not available during modeling 

process. Therefore, structural dependence makes the reuse of components and support 

for incremental design harder.

Another extension of Petri nets introduces object-oriented concepts, which pro­

vides an easy understanding of modeled systems and the reusability of Petri nets. 

This approach is not in conflict with our work since we focus on the modeling of 

communication mechanisms and component interactions. More specifically, object- 

oriented approach can be adopted to construct function nets modeling component 

behavior.

3.3 Informal Introduction to  the Framework

In order to illustrate concepts of the framework, we present a small system inspired 

by the case study “the Dining Philosophers” in [144], In our version, philosophers,
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the host, and the servant communicate with each other by sending and receiving 

messages.

Figure 5(a) shows our version of philosophers. A philosopher can join the table 

to think and eat. In order to join the table, he sends a seat request to the host. 

If a seat is available, the philosopher can sit in the allocated seat. When he feels 

hungry, he can obtain his left and right forks by asking the servant. Only with two 

forks in hands, he can eat. After a philosopher finishes eating, he can release forks 

by notifying the servant so tha t the servant can take back the forks. A philosopher 

can leave the table for reading by notifying the host.

Figure 5(b) and 5(c) show Petri nets for the host and the servant respectively. We 

assume there are n seats around the table, and n  forks on the table. The seats are 

managed by the host. A philosopher can only take the seat allocated by the host. 

The host always let each philosopher sitting in the same seat. Forks on the table 

are managed by the servant. The servant can give a philosopher his left and right 

forks if the servant receives his request and both forks are available, i.e. no other 

philosophers are using them.

There are two special kinds of places in the Petri nets of Fig. 5: input places and 

output places. An input place represents an “unidirectional channel” through which 

the external environment can send messages to the model, while an output place 

represents a “unidirectional channel” through which the model can affect its external 

environment by sending message to it. In Fig. 5, an input place is denoted by a 

circle with a thick line, while an output place is denoted by a circle with a dashed- 

thick line. The set of input and output places are {AssignedSeat, AssignedFork} and 

{RequestSeat, PhilLeft, RequestFork, ForkReleased} respectively for component mod­

els of philosophers. A philosopher sends a seat request to its external environment, 

and the host is notified from a message at place RequestSeat. Whenever a message 

is put in place SeatRequest, the host knows there is a new seat request from some 

philosopher.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

» RequestSeat\  m

AssignedSeat ForkReleased

SitDown
Reading

Thinking

AssignedFork

* - *
PhilLeft

Eating

P2

CheckFork

ReleaseForkLeaveTable

TakeFork

JoinTable

SeatR equ est A v a ilS ea t

R ev o k eS eaA ssign S eat

* - *
SeatA vail O ccu p ied S eat L eftP hil

(b) Host

(a) Philosopher

F orkR eq uest A va ilF ork

i
---------- =»-

A ssignF ork

V I

R evok eF or

O O

(c) Servant

Figure 5: Component Models in Hurried Philosopher Example

Although each component in the dining philosopher problem is modeled by a Petri 

net, and the protocol between a component and its external environment is implicitly 

defined by specifying the sets of input and output places, the specification of com­

munications among components is still missing. In other words, an approach should 

be proposed to integrate these individual models to a complete model without major 

modification. A straightforward way is through place fusion or transition fusion. In 

this case, an output place in one model can be merged with an input place in another 

model. For example, we can merge places AssignedFork in Fig. 5(a) with the place
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ForkAvail in Fig. 5(c). However, this approach can cause several problems. First, it 

requires internal information of component models, which is often not needed during 

communication between different components. Furthermore, it breaks the principle of 

modularity. Second, place fusion may change the semantics of individual component 

model. For example, most of reactive systems respond to the next external event only 

when they have handled the current event just like the run-to-completion assumption 

in UML state machines. However, place fusion may destroy the above working order: 

to preserve the behavior, Petri nets have to be changed [52], which makes the syn­

thesis more complicated. Finally it cannot distinguish channels or connectors from 

components based on syntax, which makes systems hard to understand.

In the framework, Petri nets in Fig. 5 are called function nets. Another kind of 

Petri nets called component nets is proposed to “wrap” function nets through the idea 

“nets as tokens” [152,153]. More specifically, function nets model component internal 

behavior in terms of event handling, while component nets model the management 

of message pools for a set of components sharing the same behavior. The object 

G in Fig. 6 contains component nets for philosophers and servants. Generally, a 

component net has the following places: a set of places called input interface receiving 

messages from environment, a set of places called output interface sending messages 

to environment, and a place Pobject containing function nets as tokens. There is a set 

of input transitions, in our case only one transition tin passing messages to function 

nets. Similarly, there is a set of output transitions, in our case only one transition 

tout passing messages from function nets to output interface. A transition tresponse is 

enabled if a transition in the function net is enabled and there are no tokens in the 

output places. As a result of firing transition tresponse, an enabled transition in the 

function net is fired. A component instance of a component model, described by a 

sub-marking of a component net, is denoted by tokens in interface places and Pobject 

sharing the same identification number. For example in Fig. 6, the tokens with the
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same color red in philosopher component belongs to the same component instance, 

i.e. there are three philosophers and one servant.

In order to construct systems based on component nets, transformation rules are 

adopted to specify message exchange between interfaces of different components. Here 

we assume that tokens contains sender and receiver information, and message para­

meters. Fig. 6 shows a rule and its application to component nets of philosophers and
I V • •servants. A production, i.e. rule p:L <— K  —> R  consists of three objects L ,K ,R  and 

two morphisms I and r. Given a morphism L  —> G denoted by a dashed arrow in Fig. 

6, we can apply the production to the object G (disjoint union of philosopher and 

servant in Fig 6). If gluing conditions are satisfied, the pushout complement X  can 

be constructed such that the diagram (1) is a pushout. Due to the characteristics of 

category, object H  exists such that the diagram (2) is also a pushout. Therefore, we 

say H  is derived from G via the production p, denoted by a transformation G => H . 

The component nets for philosophers and servants are connected through the channel 

denoted by R. In more general case, channel may be more complicated, such as an 

AHL-net with memory and buffer.

Figure 7 shows the resulted system net by synthesizing different component nets. 

In Fig. 7, component nets are denoted by enclosed dotted lines. We assume there 

is a reading philosopher Watson. The type of places Pi and Pa is a queue satisfying 

FIFO (first in, first out) in this case. Table 2 shows the firing sequence of Watson 

joining the table. In the table, SeatN O  is the seat assigned by the host to Watson.

3.4 C om ponent M odels

In the proposed framework, components are modeled by component nets, a variant 

of Algebraic High-Level Net. Component nets explore the idea of “Nets as Tokens” 

proposed by Dr. Valk [152] for the introduction of object-oriented concepts into the 

Petri net formalism. The higher level capture the message passing between different
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Figure 6: A Transformation Example

components, while the lower level, called function nets model component behavior. 

This section explain function nets and component nets in detail.

3.4.1 F unction  N ets

Function nets are used to model component functionalities without the concern 

of component interactions and non-functional requirements such as responsiveness, 

scaleability, security, and reliability etc. More specifically, function nets specify com­

ponent responses to messages from the external environment. We define function net 

as follows:

D efin ition  14 (F unction  N e t) A fu n c tio n  n e t is a 4-tuple B N  = (N , P{n, Pout, 

allocate) where:

•  N  is an AHL-net;

• Pin ^  P  is a set of input places;
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Figure 7: System Net of Dining Philosopher Example

• Pout Q P  such that Vp G P„ut : p* =  0 is a set of output places disjoint from  

input places (Pin n  Pout = ®);

• allocate is a function assigning each input place a set of tokens it may receive 

from environment, i.e. Vp G P{n : allocate(p) C 2Atw<p) and Vp,p' G Pin : 

allocate(p) n  allocate(p') = 0.

A function net with a non-empty marking M  of AHL-net N  is stable if:

•  No messages in the input places: Vp G Pin, flterm  G A typê  : (te rm ,p ) < M ;

• No message in the output places: Vp G Pout, flterm  G A type^  : (te rm ,p ) < M ;

•  No transition is enabled under the marking M : Vf G T  : pre(t) ^  M \/cond(t) =  

fa lse .

As the above definition indicates, function nets are a special kind of algebraic high- 

level nets [128] by classifying places into three categories: input places, output places
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Table 2: Transition Firing Sequence of Watson Joining Table

M a r k in g  o f  t h e  S y n th e s is  N e t F i r e d  T r a n s i t io n

P h i l ( W a ts o n ) T a b le  A g e n t

C o m m u n .  N e t F u n c .  N e t

Pi Po Function Net Pi Po Function Ne t

1 0 0 (W atson , R eading) 0 0 ^5 = 1  (j,A vailS eat) P h i l . t r e spo n se Jo inT ab le

2 0 0 (W atson , P 5) © 
(S eatR eq , R equestS eat)

0 0 £ ”=1 (j.A vailS eat) P h i l . t s e a t R e q u e s t N /A

3 0 S eatR eq (W atson , P 5) 0 0 S ”=1 (j,A vailS eat) ^ M s e a t  Reques t N /A

4 0 0 (W atson , P5) S eatR eq 0 A vailSeat) T a b l e . t i n N /A

5 0 0 (W atson , P5) 0 0 £™= l (j,A vailS eat) © 
(S eatR eq , S eatR equest)

F  a b le .t r esponse A ssignS eat

6 0 0 (W atson , P5) 0 0 £  L ( j , A vailSeat) © 
(S eatN O , A vailSeat) © 
(S eatN O ,O ccup iedS eat) © 
({ SeatA vail, S eatN O  ), 
S eatA vail)

T a b l e . t s e a tAva i l N /A

7 0 0 (W atson , P5) 0 (
S eatA vai
S eatN O
)

£ ? = 1 (j, A vailSeat) © 
(S ea tN O , A vailSeat) © 
(S eatN O , O ccup iedS eat)

S e a tA v a i l N /A

8 {
S eatA vai
S eatN O
)

0 (W atson , P 5) 0 0 £ j = 1 (j, A vailSeat) © 
(S eatN O , A vailSeat) © 
(S eatN O , O ccup iedS eat)

P  h i l . t i n N /A

9 0 0 (W atson , P 5) © (( 
S eat A vail,SeatN O  ), 
SeatA vail)

0 0 ^ j = i  (j, A vailSeat) © 
(S eatN O , A vailSeat) © 
(S eatN O , O ccup iedS eat)

P h i l . t respori6e SitD ow n

10 0 0 (( W atson , S eatN O  ), 
T h ink ing)

0 0 E j1—l (j, A vailSeat) © 
(S eatN O , A vailSeat) © 
(S eatN O , O ccup iedS eat)

and internal places. Input places contain messages received from the external envi­

ronment. Output places contain messages to the external environment as responses, 

while internal places indicate component status. Input, output, and internal places 

are supposed to be disjoint, otherwise the meaning of a message in such places is 

ambiguous. Upon reception of a message in an input place, a function net can be 

executed until reaching a stable status, in which no transition is enabled and the 

component is waiting for the next to-be-handled message. As a result of handling a 

received message, in most cases, at least one message in an output place is generated 

as a response to the external environment.
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In most cases, sets of input and output places are not empty. However, if both 

sets are empty, we say such a component is a closed system that does not interact 

with other components or systems. If only the set of input places is empty, we say 

the component is a message generator, which affects its environment. If only the 

set of output places is empty, the component is called recorder, which only records 

environment’s influence on itself without feedback.

Given a component, we can either model its behavior as a function net from scratch, 

or make little modifications to the available Petri net behavioral model to meet the 

definition of function nets. However, it is in general impossible to model or obtain 

the behavioral model of commercial-off-the-shelf (COTS) components. W hat we have 

known about these blackbox components is the well-defined relationship among in­

terfaces (input and output places). Fortunately, we can either construct a behavioral 

model from such relationships or use algebraic specifications to represent such in­

terface relationships of blackbox components . In either way, component nets work 

correctly since a function net is actually treated as an algebraic specification due to 

the fact that Petri nets are monoids [108].

3.4.2 C om ponent N ets

A component not only has its own behavior, which is modeled by function nets, but 

also needs to communicate with other components through message exchange, and 

may have some non-functional requirements including responsiveness, scaleability, 

security, and reliability. Therefore, we adopt the idea “nets as tokens” to synthesize 

function nets with communication mechanism. The paradigm “nets as tokens” was 

introduced by Valk in order to allow nets as tokens, called object nets, within a net, 

called system net [152,153]. The object nets may not only change its marking, but 

also modify its net structure in the context of system nets. Such characteristics, 

together with the communication complexity between objects nets and system nets, 

confine the research of object nets on low level Petri nets.
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Fortunately, net structures of function nets in our work are supposed to be un­

changeable. Therefore, an algebraic high level net may be represented by an algebra, 

which can be adopted by another algebraic high level net as part of its specification, 

which is viable since Petri nets are monoids [108]. The following shows the signature 

S IG Bn  constructed for a given function net B N  = (N , Pvn, Paat, allocate) where N  

=  (SP E C , X , P, T , type, cond, pre, post, A) and X  a finite set of variables, i.e. 

X  = {x l, ...,xn}.

S IG bn  —

sorts: Transitions, Places, InPlace, OutPlace, Bool, System, InEvent, OutEvent, 

Domainxi, ..., DomainXfl 

opns: truthValue, falseValue: —► Bool

enabled: System x Transition x Domainxl x . . .  x Domainxn —> Bool

enabled': System —► Bool

fire: System x Transition x Domainxl x . . .  x Domain.,,n —> System

hasoutput: System x OutPlace x Events —» Bool

hasoutput': System —*■ Bool

hasinput: System x InPlace—> Bool

hasinput': System —► Bool

output: System x OutputPlace x OutEvent —► System

input: System x InEvent —> System

Operation enabled specifies if a transition is enabled under the current marking 

and the assignment to variables. Operation f ir e  fires a given transition with a given 

variable assignment. Operation hasoutput checks if a given output place contains a 

given message. Operation hasinput checks if a given input place contains a message. 

Operations enabled', hasoutput' and hasinput' are the more abstract version of corre­

sponding operations. Operation output removes a given message from a given output
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place, while operation input adds a given message to an input place. Based on the 

signature S I G b n , a  S I G b n -algebra B  can be constructed as shown in Appendix A.

In order to communicate with the environment, each component manages an input 

and output message pool. Although we choose the data structure queue in this inves­

tigation, the message pool actually can be represented by any other data structures 

such as list or stack. However, no m atter what kind of abstract data structure is 

chosen, following signature S IG  com should be “included” in specifications of message 

pools.

SIG  com 

sorts: Queue 

import: MESSAGE 

opns: empty: —> Queue

add: Queue x Message —► Queue

remove: Queue —► System 

first: Queue —>■ Message

where

M E S S A G E  = 

sorts: Message

import: NAME, ID 

opns: kind: Message —► Name

sender: Message —> ID 

receiver: Message —> ID

Operation add adds a message to the queue, while operation remove removes first 

available message from the queue. Operation f i r s t  returns the first available message 

in the queue. Operations kind, sender, receiver return message type, message sender

and receiver respectively. The signature N A M E  and ID  specify the message type

and object unique identification number respectively.
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Based on the above algebraic specifications, we can define component nets as the 

following:

D efin ition  15 (C o m p o n en t N e t) Given a function net B N , a com ponent n e t

based on B N  is an AHL-net N0 =  (SP E C 0, X , P0, T0, type0, condo, pre(), post0, 

A q) shown as L in Fig. 9 where

• SP E C q = (S IG b n  + S IG corn, $) is an algebraic specification;

• Po = {Pobjectj Pi; Po};

• ^0 ~  { ôut ; tresp0nse, tin };

• type0 (Pobject) — ID  x  BSystem; typeo(Pi) = ID  x Queuein, type0 (Po) =  ID  x 

Queueoub,

• Function condo is as follows: 

condoitin) = condoitffut) =  0;

condo {tresponse) — (dt G  Brpransni(yn, Hvx/i G Asi such that x i G X si, for i l,...,n . 

enabledB(x, t, vx\ , ..., vxn) = =  true);

• The function preo is as follows: 

preo(tin) = ({id,y),Pi) © ((id ,x),P object),

P^eo(tresponse) = ((id, x) ,Pobject),

preo(tout) = ((id ,y),P 0) © ((id, x),Pobject);

• The function posto is as follows:

post0 (tin) = ((id,remove(y)),Pf) © ((id, inputB(x, fir s t(y ))) ,P object);

pOSto(tresponse) = ((id, f i r e B(x ,t,V xl, ■••,VXn)'), Pobject);

post0 (tOut) = ((id, add(e, y)),P0) © ((id, outputB(x,p, e)),Pobject);

• A q is a SPECo-algebra.
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tr e sp o n s e
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hasoutput 'B (x) = =  f al s i  
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t i n

Figure 8: The Semantics of a Component

A component net not only executes its function net as a response to the external 

environment, but also manages the input and output message queues according to 

system specification. Generally these tasks are not isolated from each other, rather 

there is a strong relationship between them affecting component behavior in terms 

of:

• When to fetch from the input queue the next message, which is ready to be 

processed by the function net?

• When to put a generated message to the output queue in which the message is 

available to its environment?

•  When to process the current message in input places by executing the function 

net?

A component specifies the answers to the above questions for all of its components. 

The AHL-net N 0 as constructed in Definition 15 is a special component architecture 

that allows its components to execute the function net and manage the queues at
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appropriate time. Due to the flexibility of potential productions, a component may 

provide complex answers to the above questions for contained components. In other 

words multiple components of a component may have different semantics if necessary. 

For example, in Fig. 8 a component idi {id\ is a constant of sort ID ) is distinguished 

from other components by having run-to-completion assumption: A component can 

handle the next message in the input queue only if the function net is stable, while it 

can put a generated message to the output queue when no transition in the function 

net is enabled. Therefore, refinement productions are introduced to provide flexibility 

to model complex answers to the above questions by refining transitions t in, tout, 

r̂esponse and places Pi and .

3.5 T ran sfo rm atio n  R ules

Besides modeling components, we need to provide an approach to model interac­

tions in the form of message exchange as well as a methodology to integrate component 

models into a system model in a modular and incremental way.

In the framework, transformation rules (or productions) in HLR-category 

(A H LN E T, M a h l n ) [128] are adopted to model interactions. By exploring trans­

formation rules, the framework has the following advantages as well as flexibility and 

powerful expressiveness:

• Transformation rules have formal semantics. Since Petri nets are also a formal 

graphic modeling language, our methodology of system modeling has a strong 

theory basis.

• By adopting transformation rules, we not only separate component modeling 

from channel/connector modeling, but also distinguish dynamic component cre­

ation and destruction from component modeling.

•  Transformation rules can also be explored to refine/construct component nets.
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• By adopting transformation rules, system can be modeled in a modular and 

incremental way.

• It is flexible to model different (sub)systems containing various aspects or sce­

nario by applying different transformation rules to different component nets.

I have defined multiple types of transformation rules for various purposes in the 

framework. Table 3 gives a summary of production types. Creation/destruction 

message passing productions are distinguished from interaction productions since such 

messages are passed from a component to a component net, not from a component 

to another component just like interaction productions. Refinement productions are 

used to refine component nets, especially the relationship between message pools and 

function nets to support complicated behavior such as run-to-completion assumption 

in UML state machine diagrams.

We have to point out that currently we do not take message broadcasting into ac­

count. Given a transformation rule (L <— K  —> R) and an AHL-net G, the occurrence 

of L in G is not unique, and therefore we may get multiple AHL-nets. Not all of them 

are valid (sub)systems with the concern of requirements. A consistent condition is 

given for each kind of productions to guarantee that the system model we obtain is 

valid. In the rest of this section, I give the definition of each kind of transformation 

rules.

3.5.1 R efinem ent R ules

D efin ition  16 (R efinem ent P ro d u c tio n ) Given a component net N q  based on the 

function net B N , a refin em en t p rodu ction  p: (L <— K  —> R ) is in the form of 

Fig. 9 such that L = N q and morphisms K  —»■ L and K  —> R are in the class M a h l n - 

Additionally, for any transition in R  with an incoming arc from place Pobject, there is 

an corresponding outgoing arc to place Pabject-

In Fig. 9, a dashed rectangle in R  indicates a sub-AHL-net, the structure of which 

is up to each production. Therefore, a refinement production actually specifies that
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T y p e s D e s c r ip t io n

R efinem ent P roduction R efining generic com ponent nets

C reation P roduction A dding dynam ic com ponent creation functionality  to  com ponent 
architectures

D estruction  P roduction A dding dynam ic com ponent destruction  functionality  to  com po­
nent architectures

Interaction P roduction C onnecting com ponent architectures through m essage exchange

M essage C reation P assing  
Production

P assing creation m essages from a com ponent to  a com ponent net

M essage D estruction  
Passing P roduction

P assing destruction  m essages from a com ponent to  a com ponent 
net

Table 3: Summary of Production Types

place Pi may be refined with places P f , . . . ,  P ” , place PQ with places P f . . . . ,  P " \  

transitions tin, tresponse, tout with sub-AHL nets. The set of places Pt], . . . ,  P ” is called 

the input interface of CA,  similarly P f , . . . ,  P™ is the output interface. In refinement 

productions, firing a transition in R  either updates the marking of a concrete function 

net, or never need access to tokens in place Pobject■ Such restriction is for the purpose 

of property “uplifting” specified in Section 3.7

3.5.2 C re a tio n  R ules

During system evolution, component instances1 may be created and destroyed dy­

namically during runtime, which has to be supported by system designs. In order 

to support dynamic instantiation of components, the following productions are intro­

duced.

D efin ition  17 (C rea tio n  P ro d u c tio n ) A crea tion  produ ction  p: (L <— K  —>

R ) is in the form of Fig. 10 such that:

• Morphisms K  —> L and K  —* R  are in the class M a h l n ;

• The morphism K  —> L is an isomorphism;

T n  general com ponents are heavyw eight un its w ith  exactly  one instance in  a system . However 
our approach can also be applied to  m odel system s m ade up of objects. Therefore, th e  term  -  
com ponent in sta n ce- is a little  bit abused.
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< : o  -  . a
{id, y)

(id, input  s [ x ,  f i r  st {y)))  {id, x)
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Figure 9: A Refinement Production

• R  is an AHL-net, and the dashed rectangle represents a sub-AHL-net specified 

by each production.

•  The output tokens along arcs from the dashed transition should have the same 

identification number.

In the Fig. 10, place Pc contains creation request, while place Ifd indicates next 

available unique identification number that will be assigned to next constructed com­

ponent. The dashed rectangle represents a sub-AHL-net specifying the process of 

creation request. Similarly, we can define destruction productions.

3.5.3 D estruction  R ules

D efinition 18 (D estruction Production) A d estru c tio n  produ ction  p: (L <—

K  —► R ) is in the form of Fig. 11 such that:
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next(T<

Figure 10: A Creation Production

•  Morphisms K  —> L and K  —> R  are in the class M a h l n ',

•  The morphism K  —► L is an isomorphism;

• R  is an AHL-net, and the dashed rectangle represents a sub-AHL-nets specified 

by each production.

•  The output tokens along arcs to the dashed transition should have the same 

identification number.

Figure 11: A Destruction Production

By applying refinement productions and creation/destruction productions to a com­

ponent net as constructed in Definition 15, we can obtain a more refined AHL-net, 

called component, which is the atomic entity in a component-based system. A compo­

nent specifies potential communication mechanisms, behaviors, and their relationship
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for a set of components. Consistent transformation is introduced to constrain the ap­

plications of the above productions.

I rD efinition 19 (C onsistent Transform ation) Given a production p:L *— K  —> R,

a transformation G =$■ H  where the occurrence of L in G  is f =  (fsPEC,fp,fT,fA)-'L  —> 

G, is a consistent transformation if the following conditions hold:

• When p is a refinement production:

f  £ M a h l n  and morphisms f p  and f p  are isomorphisms.

• When p is a creation/destruction production:

f  E M Ah l n , {f P(P l) ,... ,fP(P f)} and { fP(P f) ,...,fP(P™)} are the input and 

output interface of G respectively.

A derivation sequence Go =£• G\ =1* ...Gn_i =§• Gn is called a consistent derivation 

sequence if  Gi P=£1 Gj+i is a consistent transformation for i= 0,...,n-l.

Definition 20 (C om ponent A rchitecture) Let N0 be a component net over the 

function net B N  as constructed in definition 20. Given an AHL-net transforma­

tion system A T S  — (N0, P), a com ponen t arch itecture C A is an AHL-net such 

that there is a refinement production p, a creation production p' and a destruction 

production p" in P satisfying one of the following consistent derivation sequences:

•  CA = N0;

• N0 4> CA;

• No CA' 4  CA;

• No C A ' €  CA;

• No CA' CA" £  CA;

• N0 ^  CA' C  CA" 4  CA;
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A marking M  of a component architecture C A  is a well-defined marking if for any 

identification number id  £ ID: ((id, (B N id, M ) ) , P obj e c t )  <  M  ((id,in),P.f )  < M  

((id ,out),P l0) < M  for k =  and I = 1 If (((id ,(B N id, M ) ) ,  P o b j e c t )  ©

© ®i=i,...,m((id’out) ’Po)) ^  we saY there is a component 

instance id of the component architecture. The marking ((id, (B N id, M ) ) , P 0b j e c t )  ©

© ® ;=i is called the snapshot of the compo­

nent instance id.

3.5.4 Interaction Rules

Component architectures describe a set of components sharing the same function 

net structures but with different queue structures and behaviors. However, there is 

limited benefits without providing an approach to integrate them into a single model, 

which supports modular and incremental design. Two components interact with each 

other by exchanging messages, which is modeled as productions.

D efinition 21 (Interaction Production) An in te ra c tio n  p ro d u c tio n  p: (L <—

K  —» R ) is in the form of Fig. 12 where

•  Morphisms K  —> L and K  —> R  are in the class Ma h ln I

•  The morphism K  —> L is an isomorphism;

•  R  is an AHL-net such that: sender(first(y ')) = id' and receiver(first(y ')) = 

id;

An interaction production actually models an unidirectional communication chan­

nel between two component architectures. By replacing id and id' with concrete 

components, the production models the unidirectional communication channel be­

tween two components of different component architectures. A channel modeled by 

an AHL-net has its own properties and characteristics. It can be a pipeline, a unreli­

able network, or a FIFO structure, and it may have its own message buffer. Therefore
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O  O  Q *
P i P i (id, y) (id, a d d ( f i r s t ( y ' ) ,  y))

I

( i d ' , y r) v ( id ' , r emove( y ' ) )0 0 p o o
L K R

Figure 12: An Interaction Production

using productions to model interactions between components provides the flexibility 

to handle different situations by separating concerns in the process of system mod­

eling. We have to point out that places P, and P0 may be mapped into the same 

component (architecture) in the occurrence mapping. In this case, it models the 

communication between the same component (architecture).

3.5.5 C reation /D estruction  M essage Passing Rules

The messages of creation and destruction are distinguished from other messages 

that are sent from one component to another component (Currently, we do not con­

sider message broadcasting.) since the receiver of such a message is not a com­

ponent, but a component architecture. The ultimate reason is due to the fact of 

object-oriented concepts that it is class, not an object to create or destroy an object. 

Therefore, we have to introduce new productions to transfer creation or destruction 

messages from a component to a component architecture.

D efinition 22 (C reation /D estruction  M essage Passing Production) Given

a component architecture CA, a crea tion  m essage passin g  produ ction  p:

(L «— K  —> R), describing creation message passing to CA, is in the form of Fig. 13 

where

• Morphisms K  —» L and K  —> R  are in the class M a h l n ;

• The morphism K  —> L is an isomorphism;
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• R is  an AHL-net satisfying: kind( firs t(y )) = Creation, sender(first(y)) =  id, 

and receiver(first(y )) — CA. In the figure, the dashed rectangle represents a 

sub-AHL-net specified by each production.

Similarly, by replacing place Pc with place Pa we can describe the destruction message 

passing to component architecture CA.

O  O

Po
o

L

Poo
K

(id, y) (id, r emove(y ) )

Q po

R

Figure 13: A Creation Message Passing Production

The following theorem summaries the relationship among interaction productions 

and creation/destruction message passing productions.

Theorem  1 Let Ni be component architectures over function nets BN i for i—l,...,n; 

and P a set of interaction productions and creation/destruction message passing 

productions. Given any two productions p,p' e P , the derivation sequence G = 

N 0 +  ... +  jV„ =f> H  =4> X  via p and p' is sequentially dependent.

It is easy to prove the above theorem since any two sequential independent pro­

ductions do not delete any part of original AHL-net.

D efinition 23 (Valid Transformation) Given a production p —L K  R, a

transformation G =§► H  where the occurrence of L in G is f=  (fsp e c , f p , f r , f a )'-L —* 

G, is a valid transformation if the following conditions hold:
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• When p is an interaction production:

f  € M a h l n  and f p ( P i )  belong to the input interface of some component archi­

tecture, and f p ( P 0) belong to the output interface of some component architec­

ture.

• When p is a creation/destruction message passing production:

f  € M a h l n , and f p(P0) belong to the output interface of some component 

architecture, and fp(Pc) is the creation place of some component architecture.

A derivation sequence G0 =£• Gi ...Gn_i ^  Gn is called valid derivation sequence 

if  Gi P=/ Gi+ 1 is a valid transformation for i=0,...,n-l.

3.6 Com ponent C om position

D efinition 24 (System ) Let Ni be component architectures over function net BNi 

for i= l,...,n; and A T S  = (N i+ ...+ N n, P ) an AHL-net transformation system where 

P is a set of interaction productions and creation/destruction message passing pro­

ductions. A sy s te m  (S Y S ,M ) is an AHL-net with well-defined marking such that: 

3P  C P such that N i +  ... +  Nn =4> S Y S  is a valid derivation sequence over P;

According to the parallelism theorem and the above theorem, the AHL-net S Y S  

exists and does not depend on the order of application of rules in P. The components 

in the system ( SYS ,  M)  is decided by the well-defined marking M,  i.e. the projection 

of M  over each component architecture is a well-defined marking.

3.7 Analysis

We now analyze function nets and systems defined in Definition 24. More specifi­

cally, an approach is proposed to check if a Petri net is a function net. Additionally, 

we show the way to model checking the system net derived from the framework.
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3.7.1 Function nets

Not all algebraic high-level nets can serve as function nets. A function net has a 

finite behavior given an initial marking. Additionally, a component should be capable 

of handling any messages put in one of the input place when it is in a stable snapshot.

D efin ition  25 (F unction  N e t P ro p e r ty )  A function net must satisfy the follow­

ing properties:

1 A function net cannot have an infinite firing sequence from any marking M  such 

that (N , M ) = input b ( ( N , M0), e) where M0 is a stable marking and e G Qm.

2 For any stable marking M , given an event e, there is a place p € 01(e) such that 

there exists an enabled transition t G P* under the marking M  © (e, p).

These two properties ensure that a component eventually will respond to all mes­

sages in its input queue. It is easy to check that Petri nets in Fig. 5 are not function 

nets because they violate the second property. For example, a thinking philosopher 

cannot handle a fork available message although this message is not correct with 

regard to the status of the philosopher. In other words, those function nets can­

not handle unexpected messages, which in general indicate a design error. In order 

to make them function nets, exception handling transitions and exception recording 

places are added as dashed rectangles and circles respectively in Fig. 14. By intro­

ducing exception recording places, it is easier to check the occurrence of unexpected 

messages during model checking.

A function net is an open system since the message sequences it handles is variable 

and decided by its environment in runtime. Such a characteristic makes it hard to 

check whether a Petri net is a function net. In other words, we cannot provide a 

general rule or theorem to judge if a Petri net satisfies the above two properties. 

However, we can make sure a Petri net satisfying the above two properties if they 

meet some conditions, though vice versa is not always correct.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ExcepRecord2 ForkAvail Avai Fork ReleasedFork

Exception^ 
1 1

1
/  ^ . 1  u — u

A / I

11 ' 1 ' I \ 1 '

AssignFork

o

RevokeFor c i Exception 1

ForkRequest ForklnUse ExcepRecordl

Figure 14: The Valid Function Net of the Servant

T h eo rem  2 An AHL-net satisfies property 1 if  for any loop p i , tu P 2 ,h ,  ■■•Hn-iiPn =  

Pi where Pi E* L A p » + i  E t* i= l,...,n-l, there is an input place p E Pin not in the loop 

such that : 3k : p E* tk A* p =  0.

The proof is straightforward. Actually, theorem 2 means that any potential infi­

nitely firing sequence needs “assistance” from its input queue. An incoming place 

cannot be in a loop since it has no incoming arcs.

T h eo rem  3 An AHL-net satisfies property 2 i f  for anyp E Pin, there is a set of tran­

sitions {ti,. . . ,tn}C p* where *L =  {p} such that for any assignment ass to variables 

X :  V?=lass(cond(t)) =  true

3.7.2 S ystem  n e ts

System nets derived from the framework according to the Definition 24, unlike 

function nets, are closed Petri nets, which means a variety of traditional Petri net 

analysis techniques can be applied to detect errors and check the correctness of a 

model with regard to some properties specified in requirements. In this paper, we 

focus on exploring model checking technique to check if a synthesis net is correct
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with regard to specified LTL (Linear Temporal Logic) formulae. There are some off- 

the-shelf model checking tools such as SPIN [80], SMV [105]. However, we choose 

Maude [48] as our analysis tool due to the characteristics of Maude.

Unlike other model checking systems, Maude is a high-performace reflective lan­

guage supporting both equational and rewriting logic specifications and rewriting 

logic computation, which makes Maude applicable to many potential application ar­

eas -  beyond traditional ones such as hardware and communication protocols. For 

example, the potential application areas are hard to specify for SPIN, which is de­

signed and optimized for distributed algorithm applications, because SPIN enforces 

the communication between processes through FIFO channels and has limited sup­

port for data types. In addition to the more expressive power, Maude has a collection 

of formal tools supporting different forms of logic reasoning to verify program prop­

erties, including [36]:

• a model checker to verify LTL properties of finite-state system modules;

•  an inductive theorem prover to verify properties of functional modules;

•  a Church-Rosser checker, to check such a property for functional modules;

• a Knuth-Bendix completion tool and termination checker for functional mod­

ules; and

• a coherence checker for system modules.

Specific to algebraic high-level nets, it has several advantages to take Maude as 

the model checking tool. First, its specification language is an enhanced form of 

algebraic specifications, which makes transformation from ALHN to Maude easier 

and automated. Second, the Maude LTL model checker can model check systems 

whose states involve data in data types of infinite cardinality, which is crucial for 

model checking high level Petri nets. Third, in addition to model checking, we can use 

the inductive theorem prover directly without major modification to the specification.
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Furthermore, the Maude LTL model checker is comparable to other high-performance 

model checker such as SPIN in time and space performance [48].

It is straightforward to transform S IG b n  to a functional modules in Maude that 

defines data types and operations on them by means of equational theories. Functional 

modules also support multiple sorts, subsort relations, operator overloading, and 

assertions of membership in a sort. The functional module for S IG b n -Algebra for 

component architecture servant in dining philosophers problem is shown in Appendix 

B. The Petri net simulation can be defined by a system module in Maude. A system 

module specifies a rewrite theory, which has sorts, kinds, operators, and can have 

three types of statements: equations, memberships, and rules, all of which can be 

conditional. The system module for component servant is also shown in the Appendix 

B. In our implementation, a rule is defined for each transition with a valid assignment. 

For example, there are two rules Tresponse-AssignFork and Tresponse-RevokeFork for 

the transition tresponse, each of them corresponds to a valid assignment.

Generally, when we talk about LTL property of a plain Petri Net model, the atomic 

predicate is in the form of p(a), which is satisfied by the Petri net if place p contains a 

token a under current marking M ,  denoted by M  |= p(a). However, it is inconvenient 

to express properties of synthesis nets using such atomic predicates since a token 

itself can be a Petri net. Therefore, a new kind of atomic predicates is introduced for 

AHL-nets of component-based system.

D efinition 26 (Predicates and Formulae o f Petri N ets)

• For any simple type A s, we assume that there is a set of propositional formulae 

<f>s, each of which specifies a subset Sv of A s. A predicate <p under an element 

e of A s is valid if:

e (—Us F  ̂^ ^
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• For each product type A Sl x A S2, the associated set of formulae is defined as 

<J>Sl x <I>S2. A formula ( p i ,p 2) under an element (ei,e2 ) is valid if

(e i,e2) \= ASl x A S 2  (pi, P2) ei I=AS1 Pi A e2 | = a S 2  P2

• Let N  — (SP EC , X ,  P, T , type, cond, pre, post, A )  be an AHL-net and M

is a marking of N . The set of predicates of AHL-net N  and its semantics are 

defined as the following:

— For each place p and a formula <p of the type type(p), pip) is a predicate. 

A predicate p(p) is valid if:

(N, M) |=jv p{p) <—> 3a G Atype(p) : a Ha^p̂  P A (a,p) < M

— A formula of AHL-net N  is constructed by boolean connectors A, V,

and additional connectors A such that

Ve G A type(p) : e i^Atwe(p) P 

«N , M ) [ = j v  Pi(pi)) A 

((N , M ) \=N p2(p2))

((N ,M )  K P i ( ^ i ) ) V  

((N , M ) KVP2 O 2 ))

3ei G Atype(Plp e 2 G Afype P̂2̂ . 

ei V̂i A e2 (=AtVpe(p2) ^ 2  A

(ei,pi) © (e2,.p2) < M

The connectors A  and A are equivalent if pi = p2- Otherwise, there is a small 

difference, i.e. p(pi) A p (p 2) => p(pi)  A p(p2) since p(pi) Ap(<p2) describes the case
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that there are two tokens in place p  satisfying predicates <pi and p 2 respectively, 

while there can be only one token in place p satisfying p \  A <p2. The predicate 

Fork.P0bject{AvailFork(forkl))  describes markings of the servant such that place 

Pobject contain a token (N , M') where the number 1 fork is available under the mark­

ing M '.

In order to model checking system nets obtained through the approach proposed 

in previous sections, we need to “uplift” properties of lower level Petri nets to upper 

level, i.e. from function nets to component nets since it is awkward to model checking 

properties of a token. Such idea is not viable in general since lower level Petri nets 

may appear in different places. Fortunately, in a system net, the token representing 

a concrete function net is always in the same place Pobject■ Therefore, a formula of 

a function net id  always has an counterpart in the system net. This relationship is 

defined by the following definition, which only considers future time operators □, O 

and U.

Definition 27 Function M maps a future time LTL formula p  of a function net 

N  of component instance id to a future time LTL formula of the system net in the 

following way:

• I f  p  is a propositional formula:

=  P o b j e c t d f d ,  <p))

where (id ,p ) is a formula of the product type ID  x System  defined in Section

3.1

• I f  p  = lp ' where I is a future time operator □, or O, and p' is a formula of 

function net N:

M (p)  =?M  (p’)
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• I f  <p = (p'XJip" where p' and p" are formulae of function net N:

M((p) =

T heo rem  4 Let N c be a component net as a part of a closed system net, and N f  be 

a function net of a component instance. Let p  be a LTL formula of N f .  Then <p is 

satisfied by N f if  and only if  the formula M(<p) is satisfied by the system net.

The proof is straightforward due to two facts: First, A function net stays in 

the same place during its lifetime. Second, the marking of a function net is also 

a part of global marking of system nets. Some atomic predicates defined in the 

component architecture philosopher is shown in the Appendix B. The module 

S IG -B N -P H IL -P R E D S  defines atomic predicates for function net of philosopher, 

while the module P H IL _ P R E D S  defines atomic predicates for component architec­

ture of philosopher. In the module P H IL -P R E D S ,  the formulae of function nets is 

expressed as a part of condition instead of parameters of formulae of component nets.

We have checked mutual exclusion and starvation properties of dining philosopher 

problem. Mutual exclusion property means two adjacent philosophers cannot eat at 

the same time:

□ ( (p P S P O B J-E a ting (ph ill ,ph il l , 1) ApPSPO BJ-Eating(phil2 ,phil2 ,2 )))

Starvation property means if a philosopher wants to eat, he will eventually get a 

chance to eat:

n (p P S P O B J-P 2 (p h il l ,p h il l , l )  —► 0 (p P S P O B J -E a tin g (p h i l l ,p h i l l , l)))

Unfortunately, starvation property does not hold, i.e. a philosopher may starve 

to death although he has sent his request to the servant. The counterexample shows
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that the problem is because the system always responds to other philosophers’ request 

such as leaving table and joining table. Therefore, the philosopher who wants to eat 

is “stuck” after he sent his fork request, and never got a chance to obtain response 

from the servant. The starvation property should be hold with fairness constraint. 

Unfortunately, the Maude LTL model checker does not support the fairness constraint.

3.8 S um m ary

A framework to model component-based system in an incremental way is proposed 

in this chapter. The framework separates concerns of component models and their 

interaction models explicitly. A component is modeled by an algebraic high-level 

Petri net. By introducing the idea of “net as tokens” to algebraic high-level Petri 

nets, we can model more complex components due to the flexibility in handling the 

relationship between component behavior and communication mechanism. Compo­

nent interactions are specified by productions based on HLR-category (A H L N E T , 

M a h l n ) -  Additionally, productions can also be explored to refine component behav­

ior and its relationship with communication mechanism, and model functionality of 

dynamic component creation and destruction. In the framework, different techniques 

are synthesized seamlessly.

In order to analyze system nets constructed through the framework, model checking 

is explored to verify component properties. Model checking is very effective and 

verification is completely automatic. We have used Maude in the running example. 

The translation is straightforward. Although we translated the example to Maude 

function and system modules manually in this case, the translation process can be 

fulfilled automatically since each firing of a transition can be viewed as a rewriting 

step of current marking. However, model checking has its own limitation -  it is in 

general not applicable to infinite state systems. Specific to Maude, it cannot handle 

complicated system nets in terms of net structure and involved sorts since searching 

next applicable rewriting rule is time and space consuming.
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There are two kinds of properties to be verified: component behavior property 

and communication protocol property. Verification of component behavior property 

generally involves one component, while verification of communication protocol prop­

erty involves several even the whole system nets, which may be quite large in some 

situations. To solve this problem, we are investigating several compositional model 

checking techniques. Among the various proposed automated compositional verifica­

tion techniques in temporal logic [19,35,64] and in Petri nets [85,154], we found that 

the interface module technique [19] and the 10 graph technique [154]are most rele­

vant to our research. We are currently focusing on how to adapt these compositional 

verification technique to analyze system nets obtained through our framework. We 

are also studying compositional temporal logic proving techniques developed in [1],
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CHAPTER 4

VERIFICATION AND VALIDATION OF UML DESIGNS

4.1 Introduction

Unified Modeling Language (UML) [120], the de facto object-oriented modeling 

language, supports multi-view approach, i.e. artifacts created in the development 

process for different system aspects are modeled and analyzed in various kinds of 

UML concepts. More specifically, class diagrams specify system static structure; 

statechart diagrams describe behavior of individual classifiers; activity diagrams em­

phasize control flows and object flows for coordinating low-layer behaviors, rather 

than which classifier own those behaviors; interaction diagrams including sequence 

diagrams and communication diagrams illustrate implementation of use cases by de­

scribing interactions among objects to complete tasks.

The multi-view and multi-notation approach helps designers focus on individual 

viewpoints so that models are more manageable and less error-prone. However, in­

consistencies arise because “the models overlap -  tha t is they incorporate elements 

which refer to common aspects of the system under development -  and make asser­

tions about these aspects which are not jointly satisfiable as they stand, or under 

certain conditions” [147]. The detection of inconsistencies is not easy due to the 

multi-notations. Generally speaking, there are four broad approaches to detect incon­

sistencies in software models: the logic-based approach, the model checking approach, 

the specialized model analysis approach and the human-centered collaborative explo­

ration [147]. In the UML community, most of the research explore the third approach
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to detect inconsistencies of UML models, i.e. UML models are translated into a 

common semantic domain. UML inconsistency detection is even more difficult since 

syntax and semantics of UML are informal and imprecise compared to formal specifi­

cation languages. Although UML inconsistency has been widely studied, a majority 

of them focus on the formalization of individual diagrams and only check consistency 

within one or between two diagrams.

In this chapter, the framework proposed in Chapter 3 was explored to detect UML 

inconsistency among multiple diagrams, more specifically class diagrams, statechart 

diagrams, activity diagrams, interaction diagrams including sequence diagrams and 

communication diagrams. Component nets are constructed from class diagrams, ac­

tivity diagrams and statechart diagrams, while transformation rules are extracted 

from interaction diagrams. A (sub)system net can be acquired by applying a set of 

transformation rules to a set of component nets. Various kinds of UML inconsisten­

cies can be detected by exploring different analysis techniques on derived (sub) system 

nets.

The rest of the chapter is organized as the following: section 2 provides an overview 

of related works on UML. The formalization of UML diagrams to obtain two-layer 

AHL-nets and transformation rules are specified in section 3. The inconsistences 

based on Petri nets are defined and detected in section 4. Finally, a summary is 

given.

4.2 R elated Works

This section introduces the related works on the formalization of UML diagrams 

and UML inconsistency detection.

4.2.1 Form alization of UM L Diagram s

UML, as a family of languages, lacks precise semantics since static and dynamic 

semantics of UML diagrams are defined in plain English language, which is inherited
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ambiguous. Therefore, lots of formal languages have been adopted to provide precise 

semantics for various UML diagrams for the purpose of analysis.

A b s tra c t S ta te  M achines

Abstract State Machines (ASM) [82], proposed more than 10 years ago, were ini­

tially used to provide operational semantics for programming languages. Later, due 

to its ability to simulate any algorithm without implementing them, it was explored 

for high level design and analysis. In past several years, ASM was used to provide a 

formal and more precise semantics for UML.

There are two approaches to formalize UML based on ASM. One is to formalize 

UML diagrams on meta-model level [118]. The UML meta-model is a subset of class 

diagrams. All other diagrams including class diagrams are defined by the meta­

model. Therefore, the formalization of UML meta-model gives precise semantics for 

all other diagrams. However, this makes it hard to analyze UML models based on 

the semantics. The other approach is to formalize UML diagrams such as activity 

diagrams [23], statechart diagrams [24,37], class diagrams and object diagrams [142],

G ra p h  T ran sfo rm atio n

Graph transformation [43], also known as graph rewriting or graph reduction, com­

bines advantages of graphs and rules into a single computation paradigm. “It has 

been studied in a variety of approaches, motivated by application domains such as 

pattern recognition, semantics of programming languages, compiler description, im­

plementation of functional programming languages, specification of database systems, 

specification of abstract data types, specification of distributed system etc” [4]. Since 

UML itself is a diagrammatic language, it seems reasonable and promising to apply 

techniques developed in the graph transformation field to UML.

At first, graph transformation was applied to classic Statecharts in [103]. Later, 

different UML diagrams were formalized by graph transformation, such as class dia­

grams in [58], statechart diagrams in [56,57,92,104], collaboration diagrams in [50,76],
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and sequence diagrams in [67]. However, these works only focused on one diagram, 

which make them impossible to detect inconsistency between diagrams. Therefore, 

here we only discuss the work of [59] and [93].

Using graph transformation, [93] and [59] propose an approach to integrate class di­

agrams, object diagrams, statechart diagrams, sequence diagrams and collaboration. 

More specifically, they defined a system state as an object diagram that is extended 

with object states and event queues. Then graph transformation rules can be derived 

from class diagrams and statechart diagrams. The graph transformation rules associ­

ated with class diagrams defines semantics for each operation in class diagrams, while 

graph transformation rules associated with statechart diagrams define the semantics 

for each transition. By combining these two kinds of graph transformation rules, 

the change of system states as a response to events can be defined. Collaboration 

diagrams and sequence diagrams can be verified based on system states with these 

rules.

Their work is different from my research. First, they still did not formalize class 

diagrams, although they view the semantics of class diagrams as the set of valid object 

diagrams. Therefore, we cannot detect inconsistencies related with class diagrams. 

Second, graph transformation is a variant of term rewriting. Although they can be 

executed or explored to prove some properties, generally speaking, analysis based on 

them is hard and few tools support their analysis. Finally, we cannot have a clear 

idea about semantics of each operation in class diagrams until detail design. Thus, 

the advantage of their work cannot be explored at early stage.

P ro to ty p e  V erification  S ystem

The Prototype Verification System (PVS) [124] is a formalism for design and analy­

sis of system specifications. The PVS environment consists of a PVS specification 

language [123] based on classical, typed higher-order logic, an interactive theorem 

prover [140] and other tools.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

It has been shown that UML diagrams can be formalized by PVS. For example, 

class diagrams are formalized in [7,10], statechart diagrams in [8,149] and sequence 

diagrams in [9]. However these formalizations are separated from each other. There­

fore, only single diagrams can be analyzed based on this method, which is not enough 

for our research goal. Additionally, PVS specification language is based on high order 

logic, which is not well suited to model dynamic behavior.

O bject-Z

Object-Z [145] is an object-oriented extension of the Z formal specification language. 

During last several years, Object-Z was used to formalize UML diagrams, such as 

class diagrams in [87,89], statechart diagrams in [88,90], and collaboration diagrams 

in [5]. However, no efforts have been made to integrate them into a complete Object- 

Z schema. Also due to the property of Object-Z, it is not suitable to specify the 

dynamic behavior, and there is few techniques and tools to support the analysis of 

Object-Z or Z specifications.

A lgebraic  Specification  a n d  LO T O S

Algebraic specification [45,46] was used to formalize UML class diagrams [3,27,53]. 

However, algebraic specification is best at the description of abstract data type, it 

is hard and inconvenient to model the system behavior by itself. Therefore, alge­

braic specification has to be combined with other formal languages to model systems. 

The Language of Temporal Ordering Specification (LOTOS) [25] and Enhanced- 

LOTOS [150], which combine algebraic specification (ACT-ONE [45]) and algebraic 

processes such as Communication Sequential Processes (CSP) [78] and Calculus of 

Communicating Systems (CCS) [110], was explored to formalize UML diagrams, such 

as class diagrams in [38], statechart diagrams in [38,77,159]. In these works, only [38] 

considered the transformation from class diagrams and statechart diagrams to LO­

TOS. However, the connection between LOTOS theories derived from both diagrams 

was ignored. Additionally collaboration/sequence diagrams was still not formalized.
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Another problem of LOTOS is that LOTOS is hard to read and calculus of algebraic 

process is not powerful enough to model the full dynamic behavior of UML.

P e tr i  N e ts

Petri nets, as a graphic modeling language for concurrent and distributed systems, 

have a close relationship with UML -  State machine diagrams have a similar semantics 

to Petri nets and activity diagrams are defined in Petri net semantics. Additionally, 

Petri nets can be used as a complement to UML [29,84] during software development 

as well as the semantic domain to formalize UML diagrams [15,40,41,72-74,81,136]. 

Unlike previous works on the formalization of UML diagrams using Petri nets, we 

use Petri nets to construct a complete behavioral model for each class from multiple 

diagrams instead of an individual diagram.

4.2.2 In co n sistency  D e tec tio n

Inconsistency among multiple goals, requirements or models is a active research 

topic in software engineering. In the 90s,, it was concluded that it is not necessary 

to maintain absolute consistencies among software development because by doing so, 

it hinders the concurrency during software development and limit the design freedom 

[54], In many cases, it may be desirable to tolerate or even encourage inconsistency, 

“to facilitate distributed collaborative working, to prevent premature commitment to 

design decisions, to ensure all stakeholder views are taken into account” [117].

During last 10 years, lot of helpful results were obtained. For example, new logics 

such as paraconsistent logic [31,42,146], Quasi-Classical logic [83], and techniques such 

as the derivation of “boundary conditions” by goal regression [157] and the detection 

of inconsistency using pattern of divergences [156] were developed to detect and reason 

about inconsistency. Additionally, different solutions to inconsistency were proposed 

such as tolerating inconsistency [14] and “Lazy” consistency [114]. However, most of 

the research was focused on requirement engineering. In other words, the research of 

inconsistency on other phrases of software development process is ignored.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

UML, the de facto object-oriented modeling language, covers all the stages of soft­

ware development process, not only the requirements capture, but also system design 

and detail design. Therefore, UML inconsistency detection is a new challenge for soft­

ware engineering community. Even worse, although UML is a modeling language, it 

actually consists of multiple diagrams with their own notions and terms. During two 

recent workshops on UML inconsistency [94,95], lot of concrete inconsistencies were 

discussed and different techniques were proposed to detect specific inconsistencies. 

However, there are no systematic work to detect UML inconsistencies. Currently, 

only a simple classification of UML inconsistency (vertical v.s. horizontal, inter v.s. 

intra, syntax v.s. semantics) were recognized by the community.

There are two ways to analyze UML diagrams: model checking and theorem prov­

ing. Model checking is used to check if a given predicate is satisfied against the 

model by exploring all of its possible execution pathes. Currently, we can translate 

UML diagrams, especially statechart diagrams and collaboration diagrams, directly 

to input languages of model checkers such as PROMELA of SPIN [80]. The research 

in [109,139] take this way. While another way is to formalize UML diagrams based 

on a semantic domain, and then the model of the semantic domain is translated into 

input languages of model checker.

In our research, the latter approach is adopted since model checking is not the 

ultimate purpose of our research. Our purpose is to analyze UML diagrams based 

on a semantic domain. Model checking is just one of the analysis method we take. 

However, there are some benefits we can obtain by combining these two approaches of 

model checking UML diagrams. For example, it is impossible to prove the correctness 

of formalization of UML diagrams directly. But by checking the same properties 

against the same UML diagram through these two approaches, we can increase our 

confidence about the formalization.
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4.3 R u n n in g  E xam ple

The running example is a simple online shopping system as shown in Fig. 15. 

There are only three classes: Customer, Cart and Item. Since the owner of the store 

thinks their price is so low, each customer can only buy no more than five items each 

time.

The Fig. 16 shows the UML formalization of the online shopping system. From 

the figure we can see classes in class diagrams consist of operations and attributes 

(The relation association is treated as an attribute of associated classes). The class 

attributes and constructors are described as algebraic class specifications, while oper­

ations defined in activity diagrams are formalized as a Petri net. Class behaviors are 

specified by statechart diagrams, which are formalized as Petri nets. The execution of 

an activity in statechart diagrams is represented as a transition in Petri nets, which is 

later refined by a Petri net derived from an associated activity diagram. By refining 

all executions of activities, we now obtain function nets for all classes. Based on func­

tion nets, component nets are constructed with regard to policies of event pools of 

class instances. Transformation rules are extracted from interaction diagrams based 

on messages passed between instances of multiple classes. An AHL-system, as we 

discussed in the previous section, can be constructed based on derived Petri nets 

and transformation rules. It is flexible to derive Petri nets models of simple systems 

describing single scenarios or complex systems containing all scenarios described in 

UML diagrams.

4.4 A lgebraic  V iew  of U M L C lass D iagram s

In this section we sketch the main transformation rules for UML concepts of class 

diagrams into algebraic specifications. We assume that for each attribute there is one 

or more operations that only read or update the attribute value. Such operations are 

called primitive operations. The access to attributes is through the invocation of these 

primitive operations. The classes with primitive operations and constructors can be
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Figure 16: UML Formalization Pattern

formalized by abstract data types (ADTs). An instance of a class is represented by a 

value of the ADT associated to that class. Each ADT value is assigned an identity, 

which is treated as an explicit read-only attribute.

Among different approaches to describe main features of object-oriented concepts, 

we adopt the work of [129] to specify classes since it is more close to the class notations 

in UML. In particular, a class specification Cspec consists of five algebraic specifica­

tions: P A R  (parameter part), E X  Pi (instance interface), E X P C (class interface), 

I M P  (import interface) and BO D  (implementation part), and five algebraic specifi­

cation morphisms: P A R  —► IM P , P A R  —> EX Pi, E X P i  —> E X P C, I M P  —► B O D , 

and E X P C -► BOD.

A class maps onto an ADT with constructors, primitive operations and constraints. 

The constructors express the instantiation process. Each ADT at least has one con­

structor. If no constructor is explicitly declared in class diagrams, a default public 

constructor without arguments is specified in the class specification. Normally, the
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instance attributes are the parameters of the constructors. Some constraints are in­

troduced for constructors to specify attribute values of created instances. The above 

generated operations are distributed to the instance interface, class interface or im­

plementation according to the visibility of primitive operations and constructors.

An association declares that there can be links between instances of the associated 

types. A link is a tuple with value for each end of the association, where each value is 

an instance of the type of the end. A navigable end is an attribute ( [120], Page 80), 

therefore, a binary association can be treated as an attribute of classes of association 

ends. For an association with N  > 2 ends or an AssociationClass is formalized as a 

class with properties. This class maintains the set of links among association ends. 

Like the binary associations, a link refers to values of association ends through their 

identities instead of their value. By doing so, we can isolate association structures 

from structures of related classes. Therefore, it is possible to predefine association 

classes, which share almost the same instance and class interface, but have different 

implementations and constraints. There are two special associations: aggregation and 

composition. We treat aggregations as plain association, therefore no special action 

is needed. Composition is a form of special aggregation with strong ownership such 

that the part is created by the whole and the whole destroys the part before itself 

is destroyed. However, the order and the way in which part instances are created or 

destroyed is a semantic variation point, and generally not specified in class diagrams. 

In our work, we assume the part instances are created and destroyed as parts of 

the creation and destruction of whole instances, which is modeled in creation and 

destruction transformation rules

4.5 Form alization o f S tate M achine

State machines are generally used to express the behavior of part of a system. In 

our work, its usage is more specific: describing the behavior of classes declared in 

class diagrams. Petri nets are similar to flat state machines in terms of states/places
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and transitions connecting them. Variant Petri nets have been used to provide a 

more formal semantics [20,40,81,107,137]. Our previous work [40] is adopted as the 

foundation (Please refer to Appendix C for the formalization of UML state machine). 

Although it is based on hierarchical predicate/transition nets, the approach itself can 

be easily applied to obtain AHL-nets. However, several modifications to the origi­

nal method are proposed to meet the definition of two-layer AHL-nets and therefore 

provide a better understanding of state machines in Petri net concepts. More specif­

ically, the most important principle of the modification is to use component nets to 

model state machines by separating concerns of behavior from concerns of policies 

on event pools that are a semantic variant in the UML white book [120]. Therefore, 

event pool and run-to-completion assumption are modeled by the upper-layer Petri 

nets, while the lower-layer Petri nets (i.e. function nets) only specify the responses 

of state machines to events. By doing so, function nets exactly model the behavior 

of statechart diagrams, nothing more and nothing less.

The following summarizes the modification to the approach of formalizing state 

machines based on Petri nets in [40]:

•  The place INPU T  is replaced by a set of places, each of which is served as an 

input place for a distinct type of events.

•  The place OUTPUT is replaced by a set of places, each of which is served as 

an output place for a distinct type of events.

•  An additional place serving as the holder for the class sort specified in previous 

section is added by connecting all transitions that need to access the instance’s 

attributes or methods.

•  Each activity is represented by a transition, which is later refined by a Petri net 

derived from the corresponding activity diagram (see section 4.6).
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• For each synchronous operation call or signal, a message with return value is 

replied to the sender, otherwise the return value (if exists) is ignored.

•  A component net is constructed based on function nets obtained from previous 

steps with the consideration of the run-to-completion assumption (Fig. 8 and 

the policies of event pools. The policies on event pools of instances primarily 

describing the order of dequeuing and the size of the pool are specified by users 

in addition to UML diagrams.

The first two modifications is to meet the definition of function nets, while the 

third modification is to integrate class specifications with its behavior. However,

we have to point out tha t the resulted Petri nets are not complete since activities

are not supported by class specifications and need to be refined later as the above 

fourth item shows. Only after the integration with Petri nets derived from activity 

diagrams (discussed in the next section), resulted Petri nets for statechart diagrams 

are complete in terms of syntax and semantics.

4.6 Form alization of A ctiv ity  Diagram s

Activity diagrams represent UML activity graph expressing sequence, choices and 

parallel execution of actions. Activities may describe procedural computation, in this 

context class operations, which is the only usage of activity diagrams in our work. 

More specifically we only consider following actions in activity diagrams: Invocation- 

Action (including CallOperationAction, SendSignalAction, and SendObjectAction), 

ReplyAction, CreateObjectAction, DestroyObjectAction, AcceptEventAction. Since as­

sociations are explicitly treated as classes, the link related operations are treated as 

normal invocation actions.

In UML 2.0, “activities are redesigned to use a Petri-like semantics instead of 

state machines” [120]. Although one author advised that this statement is “only 

a metaphor for flow modeling without implying a complete mapping to Petri nets” 

[22], the metaphor can be made concrete to provide a better understanding of its
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semantics. The available works of transforming activity diagrams to Petri nets [16, 

22,39,96] emphasize data and control flow of actions, but the semantics of actions 

themselves is missing. We try to overcome this problem by connecting the actions with 

corresponding class specifications. In our work, we restrict to intermediate activities. 

We do not consider exceptions and structure features such as activity group and 

swimlane of activity diagrams. In our work, instead of passing objects, only object 

ID is passed in the actions.

An action is generally represented by a Petri net, as showed in Fig. 17. An 

asynchronous CallOperation Action with pre- and post-conditions is formalized in the 

way that pre-condition is first tested, then an event for the invocation of the operation 

is sent to the target, finally the post-condition is tested. Pre- and post-conditions 

are explicitly formalized as conditions of corresponding transitions in Petri nets. For 

a synchronous CallOperationAction, an additional place is added to receive return 

value so tha t the activity can continue. The dashed place containing the specified 

event in Fig. 17(c) is an input place in the derived Petri net from the corresponding 

state machine. An object node is represented by a place containing the object ID. 

The initial and final nodes are also formalized as a single place. Each parameter 

of activity diagrams (if exists) is described as a place. The transformation of other 

control nodes such as joint, fork and choices are similar to the work in [16]. The Fig. 

16 shows a Petri net derived from the activity diagram addltem.

The transition t  representing an activity in Petri nets P N S from statechart dia­

grams can be refined by a Petri net P N a derived from associated activity diagrams 

in following steps:

•  Delete the transition t and related arcs from the Petri net P N S\

•  Add the Petri net P N a to the Petri net P N S;

• Add a new transition such that its incoming places are the incoming places
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Figure 17: Petri Net Representation of Actions

of the transition t in P N S and its outgoing places are the places in P N a cor­

responding to parameter nodes and the initial node. The responsibility of the 

transition is to extract parameters of the activity from event parameters and 

start the activity.

• Add a new transition such that its incoming place is the place in P N a cor­

responding to the final node, and its outgoing places is the outgoing places of 

transition t in P N S. The firing of the transition indicates the end of the activity.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.7 Transform ation R ules From Interaction Diagram s

In the previous sections, we discussed the approach to obtain a component net for 

each class from related class diagrams, statechart diagrams and activity diagrams. 

In order to achieve system modeling based on Petri nets, transformation rules are 

necessary to integrate these components into a system. In this section, we explain how 

to obtain transformation rules from interaction diagrams, more specifically sequence 

diagrams and communication diagrams.

In our framework, transformation rules are used to model the communica­

tion/channel between objects, which is happen to be the concept of messages in 

interaction diagrams. For each message, we can identify sender, receiver, and mes­

sage type; and therefore a transformation rule can be constructed. Fig. 18 shows 

the transformation rule corresponding to the message addltem from the customer 

to the cart showed in Fig. 15(d). The transition tpass can be replaced by a Petri 

net that models more complicated channel for the message passing. A message has 

a property to indicate if it is a synchronous call operation or a synchronous signal, 

which expects return value before the sender can continue. Asynchronous message 

do not expect a reply message. The statechart diagram of the receiver is responsible 

to distinguish synchronous messages from asynchronous messages and response with 

a reply message to the sender.

The creation and destroy messages should be handled different since an object 

cannot create or destroy itself. Such messages should not be handled by instances, 

but by classes, component net in our case. The transformation rules for creation or 

destroy messages are similar to Fig. 18 except the place Pi, which is replaced by 

the place Pc(Pd). The Place Pc (P(i) is added to the component net after application 

of the corresponding creation (destroy) production, which also models the creation 

(destroy) of part instances if a composition association exists.
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Figure 18: Transformation Rule for Passing Message Addltem

4.8 M odel Inconsistency

There is no standard definition of consistency. Multiple approaches has been pro­

posed to define consistency according to different purposes. Consistency can be de­

fined based on logic such that false information can be derived from multiple view­

points [146,146], while it can also be defined as the existence of a physical model 

which implements multiple viewpoints of a system model. In our work, we view 

inconsistency as properties or rules that system nets must satisfy. The consistency 

problem of an individual diagram has been widely studied in UML community. Some 

of their work such as analysis of class diagrams based on algebra [3] can be adopted 

directly without difficulty. Therefore, in this paper we focus on the inter-consistency 

between different viewpoints of a system model.

First, the syntactic inconsistencies between different diagrams are represented as 

syntactic errors of derived component nets. There is no way to guarantee the syntactic 

correctness of component nets and function nets because errors do exist due to the 

inconsistency between UML diagrams. For example, if in statechart diagrams, a 

variable in guards of transitions is neither an event parameter, an attribute of a class 

nor a role name of an association that the class of the statechart diagram can access
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directly or indirectly, then in the corresponding function net, there is a transition 

whose condition refers to an undefined variable. In this example, we detect that 

the attribute billlnfo referred to by the statechart diagram of class Customer does 

not exist. It actually should be billinglnfo. Such kinds of inconsistencies are easy to 

detect, even in UML itself. Therefore, in the rest of this chapter we assume all derived 

Petri nets according to the proposed approach in the previous section are correct in 

syntax.

Most of UML consistencies can be specified as safety properties that Petri nets 

must satisfy during its lifetime. The safety properties are generally specified as linear 

temporal logic formulae, in which a kind of predicates is introduced in the form 

of P(t), which is true if place p contains a token t under the current marking M. 

Therefore, a Petri net with the initial marking Mo satisfies a safety property <p if each 

reachable marking from Mo satisfies ip. Violation of a safety property implies the 

occurrence of an inconsistency. This kind of inconsistencies can be detected through 

model checking. Several safety properties for a component net of a class are showed 

in the following:

• The state machine diagram of a class should response to all messages/events 

sent to it in activity diagrams or interaction diagrams. In particular class Cart, 

such property is expressed as:

□ (Vid 6 ID , x  6 Cart.Bsystem '■ cart.P0bject{id, x) A x  ^  undef)

since the function net becomes undefined whenever an unexpected message is 

input according to the S IG ahlv-algebra B  (see the Section 3.4). This property 

is violated in this online shopping example since the class Cart cannot handle 

the operation call message setShippingAddress from Customer. The original 

operation the customer wants to invoke is actually setShippingAddr instead of 

setShippingAddress.
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• Visibility checking -  Other objects can only access its public roles, attributes 

and operations. Such property for class Item  is expressed as:

□ (Vg G Queue : Item.Pi(q) A first(q).sender  = =  first{q).receiver A

first(q).type —= OperationCall A 

first{q).O perationNam e  = =  “setAssignedTo")

This means that only instances of Item  can invoke the method setAssignedTo 

since the corresponding association is a private one as showed in the Fig. 15(a). 

This property is violated due to an invocation of this method from class Cart, 

described in the activity diagram Addltem. By carefully reviewing these models, 

it is better to change the visibility of assignedTo to public.

• Incomplete interaction -  The interaction is not complete if a message is “stuck” 

in the output queue of an instance in the execution of associated Petri nets. 

This can occur if an interaction misses some link. This can be represented by a 

safety property:

□ (Vg € Queue : (P0{q) A q ^  empty —> o( V V A f i r s t ( ? )6 )̂)))
t€ (P 0)*V& *

where t* (p*) specifies the set of outgoing places (transitions) of t  (p). This prop­

erty requires that any message in an output event pool is eventually dispatched 

to input event pool of some instance.

Another way to detect inconsistency is to introduce “invalid” places. A token 

in invalid places implies the occurrence of inconsistency. This approach is suit to 

detect contradictions of pre- and post-conditions. In our approach pre- and post­

conditions of operations are represented as conditions of Petri net transitions (see 

Fig. 17). Therefore if there is a operation call without satisfying the precondition, the
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operation is not invoked in the model. However, such phenomena -  the violation of the 

precondition, generally indicating the occurrence of inconsistency, is hard to express 

as properties. But it is easy to be detected by introducing additional places. For 

example, in Fig. 16, after adding a new item to its content, the post-condition -  the 

total number of items in the cart should be no more than 5 -  is tested in the transition 

post and should be satisfied. To detect the violation of the post-condition, a new place 

exception is added to the Petri net derived from activity diagram addltem. Then a 

safety property in(->ea:ception(“.”)) is introduced to detect such inconsistencies.

Petri net analysis techniques can also be explored to detect UML inconsistency. 

This approach is especially suit to check inconsistency between statechart diagrams, 

activity diagrams and interaction diagrams. The semantics of an interaction is given 

as a pair of set of traces. The two trace sets represent valid traces Tv and invalid 

traces T*. A trace is a sequence of event occurrences. From a system net, we also can 

extract a set of traces Ts of the system, which is compared with the pair of set of traces 

Tv and Tj. The following potential results can be obtained from the comparison:

• Tv C Ts, which indicates that the interaction is totally supported by class 

behaviors.

• Ts c  Tv, which indicates that either behavior of some classes is incomplete 

or the interaction diagram contains some unnecessary scenarios since there are 

some traces in Tv not supported by class behaviors.

• T„ flTs =  0, which indicates the occurrence of inconsistency. By analyzing each 

trace in Ts, we can locate the reason of the inconsistency.

• Ti fl Ts ^  0, which indicates the occurrence of inconsistency. By analyzing each 

trace in Ts or in the intersection, we can locate the reason of the inconsistency.

In the online shopping example, we first find tha t Tv fl Ts = 0. The only trace in Ts 

indicates tha t the instance cart ends in the state ChangingShippingAddr while the
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instance customer ends in the final state. By carefully simulate the trace, we find 

that the cart in the state Addingltems receives an unexpected message setBillinglnfo, 

which is just ignored since it cannot trigger any transition. Such case happens because 

the customer first fills in shipping address and then billing information while the 

cart records these information in the reverse order. This is the inconsistency we 

are looking for. However, even after correcting such an inconsistency, we still find 

that Ts fl Tj ^  0, and the safety property n{-^exception(“.")) is violated in some 

traces. Some traces in the intersection Ts fl indicates that a customer can checkout 

without buying any goods. Other traces in the intersection describe the situation that 

a customer can buy more than 5 items, which is confirmed by the violation of the 

property □ (->exception^.")). The problem is due to the statechart diagrams of class 

Customer, which forces customers to checkout even they buy nothing, and statechart 

diagrams of class Cart, which should ignore or reject additional items.

4.9 Sum m ary

In this chapter, we adopted two-layer AHL-nets as the semantic domain for UML 

notations. AHL-nets, weaving algebra into Petri nets seamlessly, is good at the de­

scription of ADTs and behaviors based on them. Two-layer AHL-nets (component 

nets and function nets) exploring the idea of “net as token” [152,153], provides the 

support for object-oriented concepts,and further separate the model of object be­

havior from the concern of communication mechanism. The transformation based 

framework with two-layer AHL-nets as the corner stone, provides an approach to syn­

thesize different UML diagrams into a system net. More specifically, class diagrams 

are formalized as algebraic class specifications; statechart diagrams are translated 

into function nets based on associated class specifications. Transitions representing 

activities in function nets are further refined by AHL-nets translated from associated 

activity diagrams. Component nets are constructed through the integration of com­

munication mechanisms and functions nets, which are treated as a special kind of
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token. Finally, component nets of classes are synthesized into a system net through 

the application of a set of transformation rules, which are extracted from interac­

tion diagrams. Based on system nets, analysis techniques on Petri nets are explored 

to detect different kinds of inconsistency. The framework is very flexible. We can 

construct system net not only for a single scenario, but also for multiple scenarios, 

which enables us to analyze the relationship between multiple interactions modeled 

by interaction overview diagrams.
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CHAPTER 5

IMPLEMENTATION AND VERIFICATION OF SAM  

ARCHITECTURE DESIGNS

5.1 Introduction

System nets obtained from the framework illustrated in Chapter 3 are a kind 

of software architecture models, which can be easily specified by SAM (Software 

Architecture Model) [160], a architecture description language proposed by Florida 

International University. SAM is a general formal framework for specifying and ana­

lyzing software architectures. The foundation of SAM is a dual formalism combining 

a Petri net model to define behavioral models and a temporal logic to specify prop­

erties.

However, a correct and valid software architecture at design level does not en­

sure the correctness of its implementation due to the error-prone characteristic of 

the transformation from a model to its implementation. In order to validate the im­

plementation of a system net, two parts of works have to be done: realizing system 

models, and verifying or validating the implementation. By constructing the im­

plementation automatically, we can control costs, improve productivity and quality. 

Although automatic programming from a formal specification is in general impossi­

ble [13], generating the implementation from design models automatically is viable 

since architectural design provides enough details.

In this chapter, we propose a methodology to validate system implementation by 

combining runtime verification and aspect-oriented programming techniques. The
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correctness of SAM contains several concerns [75], However here we only check if 

behavioral models satisfy specified properties. To our knowledge, no similar work has 

been done in other architecture description languages such as MetaH [158], Rapide 

[100], Unicon [141] and Weaves [61] to verify and validate implementations. Fig. 19 

shows the whole picture of SAM Parser -  a tool developed to realize and validate 

SAM designs automatically. The dashed lines indicate the work to be discussed in 

this chapter. For the implementation of software architecture elements in SAM such 

as components, connectors and ports, please refer [55].

design
levelimplementsimplements

implementation
level

complie

runtime
verification

compile

Java Code ■* Aspect! Code

Arch Java Code

Behavior Model

Petri nets

Property Specifications

Temporal Logic

Component/Connector

satisfy

SAM

Figure 19: SAM Parser Overview

The rest of this chapter is organized as follows: Section 2 gives a brief introduc­

tion of related works. Preliminary knowledge of SAM and the running example are 

explained in section 3. Section 4 shows the methodology of SAM parser, followed by 

Petri net implementation and runtime monitor code generation in Sections 5 and 6 

respectively. Finally, we show the experiment result and summary.
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5.2 R elated Works

Currently, some architecture description languages (ADLs) supported the imple­

mentation of architectural design in a number of ways [106,141], but they cannot 

enforce communication integrity [101,111] in the implementation that is necessary 

to enable architectural reasoning about an implementation [2], By verifying or val­

idating implementations, we can increase our confidence on the correctness and the 

quality of implementations. This is necessary since “while architectural analysis in 

existing ADLs may reveal important architectural properties, those properties are not 

guaranteed to hold in the implementations” [2],

Runtime verification has been proposed as a lightweight formal method applied 

during the execution of programs. It can be viewed as a complement to traditional 

methods of proving design model or programs correct before execution. Among the 

existing works on runtime verification, MaC [97] is the closest to ours. MaC framework 

needs several inputs from users: a monitoring script in PEDL that provides a mapping 

between high-level events used in the requirement specification and low-level state 

information, a requirement specification in MEDL that define properties in a special 

interval logic, and a system implementation. The monitoring script is used to generate 

a filter that is a set of program fragments keeping tract of monitored objects and 

sending pertinent state information to the event recognizer, and an event recognizer 

that detects an event from values of monitored variables received from the filter. 

Runtime checker, which evaluates requirements over the current event trace received 

from the event recognizer, is generated from the requirement specification. The MaC 

framework is proposed to handle any java implementation. However, our work can be 

viewed as a special case of MaC on software architecture descriptions, more specifically 

SAM models. Therefore, we can obtain more benefits in terms of automation. In our 

work, monitoring script and requirement specification is not necessary since they 

are either implicit or explicit expressed in SAM models. Further more, the system 

implementation of SAM models is also generated automatically.
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Unlike MaC framework, runtime verification systems such as JP aX [69, 70] cur­

rently support linear temporal logic, and some analysis algorithms such as Eraser 

algorithm [138] and deadlock detection algorithm are implemented in the runtime 

checker too. Further more, JMPaX provides the ability to predict potential safety er­

rors from current successful executions. Currently, our work does not implement such 

algorithms. However we extend the range of properties to be verified: a subset of first 

order linear temporal logic formulae. Although this subset looks small, it actually 

covers most of SAM properties such as response properties involving quantifiers.

Monitoring Oriented Programming (MOP) [33] shows a different way to implement 

runtime monitoring. MOP is based on the belief that “specification and implementa­

tion should together form a system, ... and that they should interact with each other 

by design rather than grafting monitoring requirements as an add-on to an existing 

system to increase its safety” [32]. Therefore, requirement logics are inserted into 

the critical places in the program via annotations by software developers. Actually 

monitoring code is synthesized automatically from these annotations before compila­

tion and inserted into the appropriate places according to the defined configuration. 

They support both in-line and out-line, both on-line and off-line monitoring. How­

ever, MOP requires that software developers have a deep understanding of the code 

to catch all “critical” places manually, which is the issue we want to avoid.

Besides runtime verification, there are several other analysis techniques adopted on 

system implementations to produce a more reliable and error-free software system. 

Model checking has been applied to check software systems written in Java, C and 

C + +  [12,30,68]. Runtime verification focuses on the current program execution, 

while model checking examines all possible pathes. Unlike testing focusing on the re­

lationship between inputs and outputs, runtime verification underlies the relationship 

between system implementations and system properties. Therefore, runtime verifi­

cation is a complement to these techniques, which can also be adopted in our work 

without difficulty.
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5.3 Software A rchitecture M odel

5.3.1 SAM

SAM is an architectural description model based on Petri nets, which are well- 

suited for modeling distributed systems. SAM has dual formalisms underlying -  

Petri nets and Temporal logic. Petri nets are used to describe behavioral models of 

components and connectors while temporal logic is used to specify system properties 

of components and connectors.

SAM architecture model is hierarchically defined as follows. A set of compositions 

C  —  {Ci, C ‘2 , ..., C k }  represents different design levels or subsystems. A set of com­

ponent Cmi and connectors CHi are specified within each composition Ci as well as a 

set of composition constraints CSi, e.g. Ci =  {Cmi,C ni,C Si}. In addition, each com­

ponent or connector is composed of two elements, a behavioral model and a property 

specification, e.g. Cy = (S ij,B ij). Each behavioral model is described by a PrT  net, 

while a property specification by a temporal logical formula. The atomic proposition 

used in the first order temporal logic formula is the ports of each component or con­

nector. Thus each behavioral model can be connected with its property specification. 

A component Cmi or a connector Cni can be refined to a low level composition Cj by 

a mapping relation h, e.g. h(Cmi) or h(Cmi) — Ci. Fig. 20 shows a graphical view of 

a simple SAM architecture model.

5.3.2 A n Exam ple o f SAM

Our running example is a coffee machine from [155]. Fig. 21 shows a simplified SAM 

model of coffee machine. In SAM, there should have a component CoffeeMachine, a 

composition CoffeeMachine, and a hierarchical mapping from the component to the 

composition. However, in order to make the figure more straightforward, we integrate 

these three parts and still call it composition CoffeeMachine. Thus, the composition 

CoffeeMachine has ports that actually belongs to component CoffeeMachine. The
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Figure 20: A SAM Architecture Model

connection between a port of the composition and a port of its subcomponent is 

called glue, which is actually defined in the hierarchical mapping.

From this figure, we can see the coffee machine itself is modeled as a composition 

CoffeeMachine, which has three sub components: CMInterface, CoinHandler, and 

Brewing Facility, and three connectors: CH^CMI, CH-BF, and BF-CMI. Behavioral 

models of these components are demonstrated in Fig. 22. The component CMInter­

face acts as the interface of coffee machine to customers. It receives instructions from 

a customer and transfers them to other parts of the coffee machine. The functionality 

of the component CoinHandler is to make sure that customers have enough money 

for the specified coffee before the coffee machine serves the customer. The component 

BrewFacility checks the storage of specified coffee and serves the customer if there is 

enough coffee. The connectors in composition CoffeeMachine are very simple: They 

just transfer messages between a pair of ports in different components.
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Figure 21: SAM Model of Coffee Machine

Property specifications for each component/ connector in SAM are defined by LTL 

formulae. Some heuristic rules of how to specify temporal properties are given in [75]. 

The following is a property of component CoffeeMachine called Request:

((money_cmi(85) A cof feetype.cm i(2)) — ►

O (change_crra(85) V (change.cmi(10) A ready.enjoy-cmi( 1)))) ^  ^

In the above formula, atomic predicates are evaluated by checking if a port contains 

specified messages. For example, atomic predicate m oney.cm (85) is true if the port 

money.cm  of component CoffeeMachine has a message 85. Since in SAM, a port refers 

to a unique place with the same name in the behavioral model of the component, the 

atomic predicate also means the place money.cm  contains a token 85. Therefore, 

the above formula specifies the situation that when a user inserts 85 cents to the 

coffee machine and chooses coffee type 2, the coffee machine either returns 85 cents 

in case there is not enough coffee, or gives the user 10 cents change and a cup of 

coffee. Properties can also be expressed as past time linear temporal logic formulae. 

Formula 2 is the property RequireMoney in past time linear temporal logic, where
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Figure 22: Behavior of Subcomponents in CoffeeMachine
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{*) and [*] are the past time operators corresponding to future time operators O and 

□ in future time linear temporal logic. This formula says there exists an integer m 

such that whenever a user was served with a cup of coffee by the coffee machine, then 

the user must have inserted m  cents before where m  > =  50 if the user chooses coffee 

type 1, m  > =  75 if the user chooses coffee type 2, or m  > =  100 if the user chooses 

coffee type 3.

3m  G Sort(money-cmi), [*\(ready-enjoy.cmi( 1) — >

(*)( money-cmi(m) A ( (cof feetype-cm i( 1) A m  >— 50)V ^  )

(cof feetypejcm i(2) A m  > =  75) V (cof feetypejcm i(3) A m  > =  100))))

5.4 M ethodology

Fig. 23 shows the architecture of the methodology. Both SAM models and Petri 

nets are specified in an XML-based interchange format. For SAM models, a SAM 

markup language is defined. Petri Net Markup Language (PNML) [21] is used to 

specify Petri nets. By allowing the definition of Petri net types, PNML supports 

different versions of Petri nets, such as High Level Petri Nets, Timed Petri Nets, and 

etc.. Although both SAM and PNML can utilize or specify different versions of Petri 

nets, here only High Level Petri nets [121] are discussed.

From this architecture, we can see that our work consists of two parts: generating 

code to execute SAM and Petri nets, and generating monitoring code for run-time 

verification.

In order to generate code to execute SAM and Petri nets, two sets of classes called 

templates are predefined to automate the code generation. The template for Petri 

nets specifies structure and dynamic semantics of high level Petri nets, while the 

template for SAM describes basic behavior of SAM elements such as components and 

compositions. It is hard to generate code automatically given a Petri net due to the 

complexity of sorts, guard conditions of transition and arc labels [98], Although we 

cannot achieve this goal for Petri nets in general, we can realize it if the specifications
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Figure 23: Framework of SAM Parser

of Petri nets satisfies certain restrictions. In our work, we generate Java code to 

implement Petri nets and ArchJava [2] code to implement SAM since ArchJava is an 

extension to Java that seamlessly unifies software architecture with implementation 

and use a type system to ensure that the implementation conforms to architectural 

constraints.

System requirements are described by temporal logic formulae as a part of SAM 

components and connectors. For each formula, the monitoring code for runtime veri­

fication is generated by logic engine. In order to make the choice of logic independent 

from SAM parser, a middleware called logic server is inserted between SAM parser 

and logic engine. In the architecture, a protocol between the SAM Parser and the 

logic server is defined. Therefore, the choice of logic engine is independent from SAM 

parser. We use Maude [102] in the current implementation.

The final step is to integrate monitoring code with functionality code. The main 

concern during the integration is to make sure they can be weaved while they have
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clear boundary and do not affect each other’s execution. To the best of our knowledge, 

aspect-oriented programming [63,113,122] is the best for our needs since it enables 

clean modularization of crosscutting concerns, such as error checking and handling, 

synchronization, context-sensitive behavior, performance optimizations, monitoring 

and logging, debugging support, and multi-object protocols. For each component and 

connector with a non-empty property specification, an aspect [62], defining methods 

and time to invoke these methods, is generated by integrating monitoring code with 

time information. In our case, an aspect describes methods to check if properties 

are satisfied, and defines the appropriate time to invoke these m ethods- whenever 

a port sends or receives messages, i.e. a token is added or removed from a place 

corresponding to a port.

5.5 Im plem entation o f Petri N ets

A behavioral model of a component/connector in SAM is specified by a high level 

Petri net. Therefore, the implementation of Petri nets is necessary in order to im­

plement SAM automatically. Although lots of works have been done on Petri nets 

implementation, few of them supports the object-oriented code generation from Petri 

nets directly.

In order to generate Java code from Petri nets, we predefine a set of Java classes 

called templates, which specify the structure and dynamic semantics of high level 

Petri nets. For example, the basic elements of Petri nets such as places, arcs, transi­

tions, guards, inscriptions are defined by individual classes. We also provide dynamic 

semantics of Petri nets in Java classes Net and Transition. In other words, we provide 

a general but maybe not efficient approach to check if a transition is enabled and to 

be fired.

In our work, we construct a class as a child of templates for each net, place, tran­

sition, arc, inscription, initial marking, and guard. The reason for this is to make it 

easier to understand and maintain. For example, the user can provide a more efficient
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way to check the enableness of a transition and the way to fire it by replacing methods 

of corresponding classes without any side effects on other transitions. The execution 

of generated code is non-deterministic, i.e. we choose an enabled transition and a 

valid assignment randomly to fire.

It is hard to generate code automatically given a Petri net due to the complexity of 

sorts, guard conditions of transition and arc labels [98]. Although we cannot achieve 

this goal for Petri nets in general, we can achieve it if the specifications of Petri nets 

satisfy the following restrictions:

•  The needed sorts of Petri nets either are Java primitive types such as int, long, 

and boolean etc., or are defined as a Java classes including its operators, or are 

a product of already defined sorts.

•  The variables occurred in the label of an incoming arc of a transition have the 

same type as the token sort of the incoming place.

• The variables occurred in the label of an outgoing arc of a transition are defined 

in the label of an incoming arc of the same transition. In other words, only the 

label of an incoming arc can define variables.

• If a variable is a product type such as int x int and this product type is generated 

by Petri net code generator, its field is referred in the form of “.field?” , where ? 

is the field sequence number starting at 1. For example, £ is a variable of type 

in tx in t, then x .fie ld l  and x.fie ld2  refer to first and second field respectively.

Fig. 24(a) shows a Petri net satisfying the restrictions. The Petri net in Fig. 24(b) 

violates the restrictions because types of variables x l ,  and x2 are not compatible 

with the type of sort assigned to the corresponding place. The Petri net in Fig. 

24(c) violates the restrictions because of variable declaration in an outgoing arc. 

Therefore, if we choose the specification in Fig. 24(b) and 24(c), manual correction 

on the generated code is necessary.
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•) x .fie ld l= x .fie ld .2+ l]--------
< x l,x 2 >

x l= x 2 + l
< x l,x 2 >o

(a) Petri net satisfy ing restrictions (b) P etri net v io la tin g  restrictions

o x x.fieldl=x.field.2+:____H
A x = y__________ o

(c) P etri net v io la tin g  restrictions

Figure 24: Petri nets satisfying or violating guidance

The SAM Parser can still produce code successfully if the specification of a Petri 

net does not follow the restrictions. However, the generated code is inexecutable and 

will produce parse errors before the manual correction.

5.6 Im plem entation o f R un-tim e Verification

The purpose of runtime verification [132-135] is to monitor, analyze and guide the 

execution of programs. Traditionally the correctness of a model is verified at design 

level, runtime verification provides additional correctness assurance at implementa­

tion level.

Specific to our case, we need to monitor property specifications for each compo­

nent/connector during model execution. These property specifications are described 

as temporal logic formulae. Although SAM can support different temporal logics, 

such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL), here we 

only deal with future time LTL and past time LTL. In order to validate SAM during 

execution, monitoring code has to be generated for each formula, which is done by 

the logic server.

By inserting the logic server between the SAM parser and the logic engine, the 

choice of logic engine is independent from SAM parser. In other words, we can 

replace one logic with another without any modifications to SAM parser or the code 

generated by the SAM parser. Currently we choose Maude [102] as our logic engine, 

and the algorithms to generate code to monitor future time LTL and past time LTL 

can be found at [131].
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There are three different results returned from the execution of the monitoring code 

of a formula: true, false and neither true nor false called unsure. True means the 

formula is satisfied while false means the formula is violated. Generally speaking, the 

evaluation of a safety property tells us if it is violated; the evaluation of a liveness 

property tells us if it is satisfied. Unsure is an intermediate result, from which we 

cannot tell if the formula holds or fails. The intermediate result can be returned 

by the monitoring code of any type of formulae. If the monitoring code of a safety 

property returns unsure, it means the safety property does not fail during the previous 

execution. For a liveness property, unsure generally means it is not true during the 

previous execution. The following is the monitoring code for Formula 1 in section 

5.3.2.

private boolean Com_CMInterface$C.F_Request_hasResu.lt = false; 
private boolean Com_CMInterface$C.F_Request_result = false; 
private int Com_CMInterface$C.F_Request_$state = 1;

public void F_Request(Com_CMInterface$C thisObject) { 
if (thisObject.F_Request_hasResult) return;

boolean Pmoney = thisObject.isMessageContained("money_cmi","85"); 
boolean Pcoffeetype=thisObject.isMessageContained("coffeetype_cmi","2"); 
boolean PgetCoffee=thisObject.isMessageContained("ready_enjoy_cmi","1"); 
boolean PmoneyBack = thisObject.isMessageContained("change_cmi","85"); 
boolean PgetChange = thisObject.isMessageContained("change_cmi","10");

switch(thisObject.F_Request_$state) {
case 1: thisObject.F_Request_$state = PmoneyBack?-!:Pcoffeetype?Pmoney?

PgetChange ? PgetCoffee ?-l:2: PgetCoffee?3:4 :-l:-l ;
break ;

case 2: thisObject,F_Request_$state = PmoneyBack ?—1: PgetCoffee ?—1:2;
break ;

case 3: thisObject.F_Request_$state = PgetChange ?—1: PmoneyBack ? -1:3
break ;

case 4: thisObject.F_Request_$state = PmoneyBack ? -1 : PgetChange ?
PgetCoffee ? -1 : 2 : PgetCoffee ? 3 : 4 ;
break ;

>

if (thisObject.F_Request_$state == -2)
// The Formula fails : false 

if (thisObject.F_Request_$state == -1)
// The Formula holds : false 

//Currently, cannot judge the correctness of the formula : unsure
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Although we can generate monitoring code for future and past time LTL, it does 

not fully satisfy our needs for verifying properties such as first order temporal logic 

formulae during runtime. First order temporal logic formulae are hard to evaluate 

against a design model since the domains of quantification variables are generally 

infinite. However, during the program execution, the number of potential values as­

signed to a quantified variable is finite, which makes it possible to verify first order 

temporal logic formulae during runtime by transferring them to temporal logic for­

mulae without quantifications. Due to the complexity of first order temporal logic 

formulae, we only focus on a subset of them from which monitoring code can be 

generated automatically by the logic server.

The subset of first order temporal logic formulae we can handle currently has 

following restrictions:

•  Quantification variables are declared before any temporal operators and logic 

operators. For example, the formula Vx G in t(n (p(x)))  is in the subset, while 

the formula n(Vx G in t(p (x ))) is not.

• Assignments to all quantification variables occur at the same time slot, and 

no predicate is evaluated before this time slot. For example, the formula 

Vx G inf, By G in t(p (x ) A q(y) — > 0 ( r(y ))) and the formula Vx G in t,3 y  G 

int(p(x) — > r(y)) are in the subset, while the formula Vx G in t,3 y  G 

in t(p(x) — > O(r(y))) is not since the assignment to y occurs later than the 

assignment to x.

At first it seems the subset is too small and does not provide enough support for 

applications. However, due to the characteristics of property specifications on Petri 

nets and SAM -  most of first order temporal logic formulae are response properties 

[75], the subset can adequately cover the most cases of property specifications in 

SAM. The following is the core part of code for Formula 2 .
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final class F_RequireMoney_Helper {
public int 
public boolean 
public boolean 
public boolean 
public boolean

hasSuccessfulCondition; 
isSuccessful = false; 
hasFailureCondition; 
isFailure = false; 

public boolean[] F_RequireMoney_$pre = new boolean[2]; 
public boolean[] F_RequireMoney_$now = new boolean[2];

private Vector Com_CMInterface$C.F_RequireMoney_mList = new Vector(5); 
private Vector Com_CMInterface$C.F_RequireMoney_classHelperList = new Vector(5); 
private boolean Com_CMInterface$C.F_RequireMoney_hasResult = false; 
private boolean Com_CMInterface$C.F_RequireMoney_result = false;

public void F_RequireMoney(Com_CMInterface$C thisObject) { 
if (thisObject,F_RequireMoney_hasResult) return;
Vector mList = thisObject.getMessageFromPort("money_cmi");
int m;
for (int i=0; i<mList.s i z e O ; i++)

thisObject.addF_RequireMoney_mList(thisObject,
((Integer)mList.elementAt(i)).intValue()); 

thisObject.updateF_RequireMoney_classHelperList(thisObject);

boolean truthValue = true, hasResult = false;
F_RequireMoney_Helper actElement = null;
for(int i0=0; iO<thisObject.F_RequireMoney_mList.sizeO; i0++) {

m = ((Integer)thisObject.F_RequireMoney_mList.elementAt(iO)).intValueO; 
Vector helperClassList = thisObject.F_RequireMoney_classHelperList; 
int j =0;
for (j=0; j<helperClassList.sizeO; j++) {

actElement = (F_RequireMoney_Helper)helperClassList.elementAt(j); 
if( (m == actElement.m) ) break;

>
if (j == helperClassList.sizeO) continue;
F_RequireMoney$(thisObject, actElement); 
truthValue = true; hasResult = false; 
if ( actElement.hasFailureCondition ) 

if ( actElement.isFailure ) {
truthValue = false; hasResult = true;

>
if ( actElement.hasSuccessfulCondition ) 

if ( actElement.isSuccessful ) {
truthValue = true; hasResult = true;

>
if (truthValue) break;

>
if (hasResult) {

if(truthValue) The Formula Holds;
else The Formula Fails;

} else
Currently, cannot evaluate the formula;
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As we know, a component/connector in SAM has a property specification, which 

consists of multiple linear temporal logic formulae (either future time LTL or past 

time LTL). After gathering monitoring code for each formula from logic server, the 

SAM parser constructs an aspect for each component/connector. In general, aspects 

consist of an association of other program entities, ordinary variables and methods, 

pointcut definitions (interesting points in the execution of a program), inter-type 

declarations, and advice that declares a time (before, after or around pointcut) to 

take actions. In the aspect, monitoring code for each formula is invoked to evaluate 

the formula whenever a message is received from or sent to a port. The following 

code is an aspect for property specification of component CMInterface.

public aspect Com_CMInterfaceMonitorAspect {
pointcut MonitorPoint(): (call(void addMessage(String, Object)) ||

call(void removeMessage(String, Object))); 
after(Com_CMInterface$C thisObject) : target(thisObject) kk

MonitorPoint() {
F_Request(thisObject);
F_RequireMoney(thisObject);

>

variables and methods generated for each property

pointcut ConstructorPointO: ( !within(SAM_Component) kk
execution(new(..))); 

after(Com_CMInterface$C thisObject) :
target(thisObject) && ConstructorPointO {

//initialize helper variables for each property if necessary
>

>

Although we hope we can check any type of formulae during runtime, there are 

limitations for runtime verification. In other words, there are some type of formulae 

that we cannot tell if they hold or fail during runtime. □ (p — > O (q)) is such 

a formula. We cannot tell if the formula holds since there is an always temporal 

operator, which means the formula should be monitored forever. However, we also 

cannot tell if the formula fails because of temporal operator future, which means you
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cannot know the formula fails until the program ends -  but at that time there is no 

monitoring any more.

Similar to model checking, we need a counter example for analysis purpose if a 

formula fails. To produce a counter example, we record a trace of program execution 

to a log. The trace from the start to the current spot when the formula fails forms 

the counter example.

5.7 E xperim ental R esults

We use the coffee machine as the running example. Although it is a little small and 

simple, all aspects of SAM and Petri nets are covered. For the property specifications, 

Formulae 1 and 2 are defined in the property specification of component CMInterface.

As a result of executing SAM parser, lots of files are generated to implement Petri 

nets and SAM. Table 4 shows the distribution of generated files, which are the imple­

mentations of SAM structure, component/connector behavior, and monitoring codes. 

From this table, we can see even for this simple example, more than 200 Java classes 

are generated to implement Petri nets. The reason for this is due to the most impor­

tant principle for the SAM parser: The generated code is kept simple to understanding 

and modifying if necessary. In order to implement SAM, one ArchJava file is gener­

ated for each component, connector or composition. A component/connector class in 

ArchJava introduces several Java classes, which are decided by the number of ports 

contained by the element. In our example, only the property specification of com­

ponent CMInterface is not empty. Therefore, only one aspect is generated, which 

verifies formulae 1 and 2 . One thing we have to point out is tha t composition Cof- 

feeMachine has no behavioral model. Its behavior is decided by its sub-components 

and sub-connectors.

A log file is used to record the results of execution of generated code including 

implementation of Petri nets and SAM, and runtime verification. Each step taken by 

a Petri net is record in the following form:
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Tab e 4: Generated Files for Coffee Machine

#  of Generated 
Files

For P N  Im ple­
m entation

For SAM  Im ­
plem entation

For Hun- 
tim e Verifi­
cation

CoffeeM achine 0 1 0
CM Interface 11 1 1
CoinHandler 26 1 0
BrewingFacility 14 1 0
CH_CMI 5 1 0
CH_BF 5 1 0
BF_CM I 5 1 0
Tem plates 14 7 0
Sort 1 0 -
Total 81 14 1

<incoming places.{marking}>
 component/connector.transition----->

<outgoing places.{marking}>

For example, the following step means transition input is fired. As a result of the 

firing, token 85 in place money-cmi, and token 2 in place coffeetype.cmi are consumed, 

and token < 85, 2 > and 1 are added to place request-cmi and place sig respectively.

<money_cmi={85},coffeetype_cmi={2}>
 Transition iutput(input) >

<request_cmi={<85,2>}, sig={l}>

For the runtime verification, we record the value of each predicate, and the result 

of the current evaluation. The following is an example of the evaluation of formula 1 

named F-Request.

Formula CMInterface.F_Request:

Pmoney= false 
Pcoffeetype= false 
PgetCoffee= true
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PmoneyBack= false 

PgetChange= false 

Cannot judge Formula F_Request currently!

In the above output, predicates Pmoney, PCoffeetype, PgetCoffee, Pmoney­

Back and PgetChange refer to money-cmi(85), coffeetype-cmi(2), ready-enjoy.crni( 1), 

change-cmi(85) and change„cmi( 10). From the summary of runtime verification, we 

can see we cannot judge the correctness of formula 1 and formula 2 .

We know that the original property expressed by the formula 1 is true. After 

carefully checking the log that records the trace of program, we found that the error 

was due to the sub-formula PgetChange A P g e tC o ffee  since the program could not 

guarantee that place change-cmi had token 85 and place ready_enjoy-crm had token 

1 at the same state. Therefore, during runtime verification, we could not assert that 

the formula was true. On the other hand, due to the O operator, the monitoring code 

could not return false for the verification of this formula. That is why the verification 

of the formula 1 returned unsure result. Actually, the formula 1 should be corrected 

as following:

{{money jcmi{85) A cof feetype-cm i{2)) — ►
C3 \

(<>change-cmi(85) V (Ochange-cmi(10) A C ready.enjoyjcm i(1)))) '

For the unsure result of formula 2 , at first it seemed very strange since the purpose 

of runtime verification was to check if formulae were satisfied or not. However this 

result is correct because formula 2 is a safety property, which means it has to be true 

in every state. The unsure result for a safety property tells us tha t the property did 

not fail before the current checking point. In this case, it means the formula 2 was 

true during the lifetime of the coffee machine.
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5.8 Sum m ary

Validation and verification of systems at model level is relatively mature, and lots 

of tools have been developed to support model level verification. However, at imple­

mentation level, few work has been done to validate systems. In this chapter, besides 

generating code automatically to implement SAM and Petri nets, we combine runtime 

verification and aspect-oriented programming to support the validation of system at 

implementation level.

Run-time verification has been proposed as a lightweight formal method applied 

during the execution of programs. It can be viewed as a complement to traditional 

methods of proving design model or programs correct before execution. Aspect- 

oriented software engineering [63,113,122] and aspect-oriented programming [49] were 

proposed to separate concerns during design and implementation. Aspect-Oriented 

Programming complements 0 0  programming by allowing the developer to dynam­

ically modify the static 0 0  model to create a system that can grow to meet new 

requirements. In other words, it allows us to dynamically modify models or imple­

mentations to include code required for secondary requirements (in our case, it is 

runtime verification) without modifying the original code. By combining runtime 

verification and aspect-oriented programming to verify and validate models at imple­

mentation level, we can obtain the following benefits:

• The procedure from design models to implementations is generally informal, 

therefore error-prone. Run-time verification provides a means to validate the 

procedure indirectly.

• Sometimes, a model cannot be validated or verified at design level. For example, 

model checking is generally applied to systems with finite states. Unfortunately, 

the state space of Petri nets can be very huge in many cases. Although different 

approaches have been proposed to handle state space explosion problem, none
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of them has solved the problem. In this case, run-time verification is necessary 

to increase our confidence on the model.

•  Run-time verification can provide a counter example for unexpected exceptions 

of implementations.

•  Run-time verification provides a mechanism to handle exceptions of implemen­

tations that are not detected during development.

•  By adopting aspect-oriented programming, the code for runtime verification 

does not affect the functionalities of the code that realizes design models.
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CHAPTER 6 

CONCLUSION

6.1 Overview

The purpose of this research was to verify and validate UML designs by formal­

izing and transforming UML diagrams into corresponding parts in the proposed 

component-based framework, and to develop a tool to realize UML designs auto­

matically for dependability assurance by weaving runtime verification code. This 

investigation focused on:

1. formal component-based framework in which components are modeled by two- 

layer algebraic high-level nets and interactions are captured by transformation 

rules. System models can be constructed by applying transformation rules to 

component models according to system specifications.

2. UML designs formalization and transformation process that describes how to 

formalize class diagrams, state machine diagrams, and activity diagrams, and 

how to extract transformation rules from interaction diagrams.

3. Development of analysis techniques for system models constructed in the frame­

work. In order to explore model checking technique, We developed a set of 

predicates suitable to describe properties of two-layer algebraic high-level nets.

4. Automated realization of UML designs through system model constructed in the 

framework, which also weaves into the implementation runtime verification code 

generated from system properties automatically for dependability assurance.
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6.2 Contributions

As stated at the outset, the primary objective of this research was to verify and 

validate UML designs and provide an approach to realize them for dependability 

assurance. This section summarizes the contributions and benefits listed in Chapter 

1, Table 1.

The primary contribution was the development of a formal component-based frame­

work to model systems, which was described in Chapter 3. The major benefit of 

the framework is to separate component modeling from interaction modeling, which 

makes it so flexible that different sub-system, even system models can be constructed 

by needs according to system specification. Such advantage was accomplished by 

integrating various theories and techniques, i.e. algebraic specification, algebraic 

high-level net, category theory, and graph rewriting. More specifically, components 

and their interactions are modeled by Petri nets and transformation rules, respec­

tively. The (sub) system models can be constructed by applying transformation rules 

to components according to system specifications.

The next contribution was the approach of transforming UML designs into the 

framework, which was outlined in Chapter 4. This approach consists of several steps: 

First, formalizing class diagrams by algebraic specifications. Second, using algebraic 

specifications to obtain Petri net models from state machine diagrams and activ­

ity diagrams. Finally, transformation rules are extracted from interaction diagrams. 

As a by-product, we provide a precise semantics for class diagrams, state machine 

diagrams, and activity diagrams.

The following contribution was the development of a process to integrate UML 

designs into a individual but complete system model by adopting the framework as 

the semantic domain for UML designs. Various diagrams in UML designs specify 

different aspects of the system to be built. However, it is hard to obtain a complete 

overview of the system. The transformation of UML designs into the framework 

provides one way to solve this problem.
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In order to validate and verify UML designs, we adopted model checking and other 

Petri net analysis techniques to check if a system model satisfies given properties. 

In order to better utilize model checking tools (Currently Maude), we extended the 

traditional definition of atomic predicates to fit two-layer algebraic high-level nets 

better.

The final contribution is the automated implementation of system SAM models 

described in Chapter 5. Furthermore, in order to provide runtime verification for 

dependability assurance, this tool can also translate system properties into pieces of 

monitor code, which are weaved into functionality code through aspect-oriented pro­

gramming. Therefore, system properties can be checked during program execution.

6.3 Future Work

In the process of this investigation, several areas of research were either identified 

as natural extensions of this dissertation, or needed further exploration for improve­

ments. These areas are summarized below.

• There are two kinds of properties to be verified in the framework: component 

behavior property and communication protocol property. Verification of com­

ponent behavior property generally involves one component, while verification 

of communication protocol property involves several even the whole system 

nets, which may be quite large in some situations. To solve this problem, we 

are investigating several compositional model checking techniques. Among the 

various proposed automated compositional verification techniques in temporal 

logic [19,35,64] and in Petri nets [85,154], we found tha t the interface mod­

ule technique [19] and the 10 graph technique [154] are most relevant to our 

research. We are currently focusing on how to adapt these compositional veri­

fication technique to analyze system nets obtained through our framework. We 

are also studying compositional temporal logic proving techniques developed 

in [1],
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•  In this investigation, inconsistency rules and system properties were given either 

as plain natural text for general case or as linear temporal logic formula for a 

specific system. However, the plain natural text is always ambiguous, and the 

translation from them to formal definition of properties for a specific system 

model is always a manual process and error-prone. Further investigation is 

necessary to define inconsistency rules and system properties in UML designs. 

Object Constraint Language (OCL) coming with UML maybe a good candidate.

•  Although an example was shown in each chapter to illustrate the framework, 

the transformation from UML designs to the framework, and the automated 

realization of SAM models with runtime verification code, it would be better if 

this process is applied to a real application covering each steps in the process, 

i.e. from UML designs to the realization.

•  The major motivation of the framework is to verify and validate UML designs. 

However, I believe this framework can also be explored in other areas for system 

modeling, such as adaptive software architecture, and agent-oriented software 

engineering.

•  In this research, all analysis work was accomplished based on Petri nets. How­

ever, it would be more interesting if we can check the compatibility directly 

between system models (in the form of Petri nets modeling one or more sce­

nario) and interaction diagrams. Although some work has been done on this 

area, but they more focused on a simple interaction diagrams without con­

sidering complicated artifacts such as iterating, parallel, and non-deterministic 

execution.
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APPENDIX A 

S/GW -ALGEBRA

The 5/Gmv-algebra B  for a function net B N  — ( N ,  Pin, Pout, allocate) where AT 

(SP E C , X , P, T , type, cond, pre, post, A) is given by:

•  B x r a n s i t io n  =  -G

•  Bpiace P  ■>

•  PlnPlace =  Pint

•  BoutPlace =  Pout>

• B b o o I =  {true, /a/se};

•  -6System = { ( B N ,  M )\M  is a marking of the function net BiV} U {undef};

• BinEvent =  U p£pinallocate(p),

•  BoutEvent =  U p gP out A j/p e(p ) j

•  B D om ain xl = A s where an G X., for i =  1, n;

• tru thV  alue =  true; fa lseV alue = false;

• enabledp BgyStem X  B'lrans///o/; X  B j)o,na(nxi X  . . .  X  Bp)ornainxn > Bb00i with

enabledB((B N ,M ) ,t ,v xi , . . . ,v xn) = <
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where a  is an assignment for variables in X  with a(xi) = vxi, i =  1,..., n.

enabled□ : B,B  • S y s tem B booI with

enabled'B({BN, M )) =

true 31 G B j 'ransifi0n,

xi G DomainXi,i  =  1 :

enabledsiiBN , M ),t, vxi, ...,vxn) = true 

fa lse  : else

•  f i r e B ■ B s y Stem x B rpransm on x B£>omainxi x ... x B Domairixn & S y s tem

f ir e B((BN , M ) ,t ,v xl j  * * * >  ^ x n )  ^
(B N ,M ') enableds({B N ,M ),t, 

vxi , - , v xn) = true 
u ndef else

where M ' =  M  © a(pre(t)) © a(post(t)) and a  is an assignment for variables in 

X  such that a(xi) = vXi, i =  l,...,n.

• hasoutputB ■ B s y Sfem x B o uip iace x B o utp vent > B booI with

hasoutputB((BN , M ),p , e)
true : (e,p) <  M  

fa lse  : else

hasoutput'B : B System —► -Bsooi with

hasoutput'B({BN, M )) =
true \ 3e G BoutEVent ; P G BoutPiace •

hasoutputB({B N ,M ),p ,e )  =  true 

/a /se  : etse

• h a s in p u t B  • B System  X B i np iace * B B qoI with

hasintputB({BN, M) , p )
true : 3e G < M

fa lse  : else
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hasinputB . Bsystem *■ B booI with.

hasinput'b ((B N  , M) )  = <

true : 3p 6  B InPiace :

hasinputB ( ( B N , M ) , p ) =  true  

f a ls e  : else

•  OUtputB  ■ Bsystem, X BoutPlace OutEvent * Bsystem  w i t h

* * / / da t  71 /f\ a I  (B N , M' ) :  hasoutputB((B N ,M ),p ,e )  =  trueoutputB((B N ,M ),p ,e )  = <
[ u ndef : else

where M ' =  M  © (e,p).

•  inputs • BSystem X BjnEvent  ̂Bsystem with

f (HiV, M  ® (e,p)) : 3p G B InPlace : e G allocate(p) 
inputb ((B N , M) , e)  =  <

[ undef : else

Operation enabled specifies if a transition is enabled under the current marking 

and the assignment to variables. Operation f ir e  fires a given transition with a given 

variable assignment. Operation hasoutput checks if a given output place contains a 

given message. Operation hasinput checks if a given input place contains a message. 

Operations enabled', hasoutput' and hasinput' are the more abstract version of corre­

sponding operations. Operation output removes a given message from a given output 

place, while operation input adds a given message to an input place.
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APPENDIX B 

MAUDE CODE FOR HURRIED PHILOSOPHERS

The following is the functional module for 57 (Tew-Algebra of Servant in hurried 

philosophers system mentioned in the Chapter 3:

fmod FORK_SYSTEM_NET_SORT is 
including FORKAGENT_PN . 
including SYSTEM_NET_SORT .

vars m ml m2 : Marking .
var phil : PhillD .
var msg : MsgID .
var fork : NzNat .
var seat : NzNat .
var servant : ServantID .

op fenabled : System FTrans -> Bool [strat (0)] . 
ceq fenabled([ml token(AvailFork.seat)

token(ForkRequest,(phil,servant,MForkRequest,seat)) 
token(AvailFork,fork) m2], AssignFork) = true 

if fork = (seat rem ForkSeatNum) + 1 . 
eq fenabled([m].AssignFork) = false [owise] .

eq fenabled([ml token(ForklnUse.fork)
token(ReleasedFork,(phil,servant,MForkRelease.fork)) 
m2].RevokeFork) = true . 

eq fenabled([m].RevokeFork) = false [owise] .

op fenabled : System FTrans PhillD ServantID MsgID NzNat 
-> Bool [strat (6 0)] . 

ceq fenabled([m token(AvailFork.seat) token(AvailFork, fork)
token(ForkRequest,(phil,servant.MForkRequest,seat))
] .AssignFork,phil,servant,MForkRequest,seat) = true 

if fork = (seat rem ForkSeatNum) + 1 . 
eq fenabled([m].AssignFork,phil,servant,msg,fork)

= false [owise] .

eq fenabled([m token(ForkInUse.fork)
token(ReleasedFork,(phil,servant.MForkRelease,fork))
], RevokeFork,phil,servant,MForkRelease,fork) = true .
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eq fenabled([m].RevokeFork,phil,servant,msg,fork)
= false [owise] .

op ffire : System FTrans PhilAgentID ForkAgentID MsgID NzNat 
-> System [strat (6 0)] .

ceq ffire([m token(AvailFork,seat) token(AvailFork.fork)
token(ForkRequest,(phil,servant.MForkRequest,seat))
], AssignFork,phil,servant,MForkRequest,seat) =

[m token(ForklnUse,seat) token(ForklnUse,fork) 
token(ForkAvail,(servant,phil.MForkAvail,seat)) 
token(ForkAvail,(servant,phil,MForkAvail,fork))] 

if fork = (seat rem ForkSeatNum) + 1 .

ceq ffire([m token(ForklnUse,seat) token(ForklnUse.fork)
token(ReleasedFork,(phil,servant,MForkRelease,seat))

], RevokeFork,phil,servant,MForkRelease,seat)
= [m token(AvailFork,fork) token(AvailFork.seat)] 

if fork = (seat rem ForkSeatNum) + 1 .

var p : FPlace .
op favailable : System FPlace -> Bool [strat (10)] .

eq favailable([ml token(ForkAvail,(servant,phil,msg,fork)) m2],
ForkAvail) = true . 

eq favailable ([m] ,p) = false [owise] .

sort FInEvent FOutEvent . 
subsort FInEvent < Message . 
subsort FOutEvent < Message .

mb (phil,servant,MForkRequest,fork) : FInEvent . 
mb (phil,servant,MForkRelease,fork) : FInEvent . 
mb (servant,phil,MForkAvail,fork) : FOutEvent .

op foutput : System FPlace FOutEvent
-> System [strat ( 1 3  0)] . 

eq foutput([m token(ForkAvail,(servant,phil,msg,fork))],
ForkAvail,(servant,phil,msg,fork)) = [m] .

op finput : System FInEvent -> System [strat ( 1 2  0)] . 
eq finput([m],(phil,servant.MForkRequest,fork)) =

[m token(ForkRequest,(phil,agent,MForkRequest,fork))] . 
eq finput([m],(phil,servant,MForkRelease,fork)) =

[m token(ReleasedFork,(phil,servant,MForkRelease,fork))] .
endfm

The following is the system module for component architecture Servant in hurried 

philosophers system mentioned in the chapter 3:

mod FORK_SYSTEM_NET_EXEC is 
including QUEUE .
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including FORK_SYSTEM_NET . 
including FORK_SYSTEM_NET_SORT

vars m ml m2 : Marking .
var msg : MsgID .
vars fork : NzNat .
var phil : PhillD .
var servant : ServantID .
var q : Queue .

crl [Tin_Servant]:
token(FSPin, [(phil,servant,msg,fork)] ; q) token(FSPobject,[m])
= >

token(FSPobj ect,f input([m],(phil,servant,msg,fork))) 
token(FSPin, q)
if fenabled([m].AssignFork) = false /\ 

fenabled([m].RevokeFork) = false /\ 
favailable([m].ForkAvail) = false .

crl [TforkAvail]:
token(FSPobject,[ml token(ForkAvail,(servant,phil,msg,fork)) m2]) 
token(FSPoutput, q)
= >

token(FSPoutput, q ; [(servant,phil,msg,fork)]) 
token(FSPobj ect,

foutput([ml token(ForkAvail,(servant,phil,msg,fork)) m2],
ForkAvail,(servant,phil,msg,fork))) 

if favailable([ml token(ForkAvail,(servant,phil,msg,fork)) m2],
ForkAvail) = true .

crl [Tresponse_AssignFork]: 
token(FSPobject,

[ml token(ForkRequest,(phil,servant,MForkRequest,fork)) m2])
=>

token(FSPobject,
ffire([ml token(ForkRequest,(phil,servant,MForkRequest,fork)) m2], 

AssignFork,phil,servant.MForkRequest,fork)) 
if fenabled([ml token(ForkRequest,(phil,servant,MForkRequest,fork)) m2], 

AssignFork,phil,servant,MForkRequest,fork) = true /\ 
favailable([ml token(ForkRequest,(phil,servant,MForkRequest,fork)) m2], 

AvailFork) = false .

crl [Tresponse_RevokeFork]: 
token(FSPobject,

[ml token(ReleasedFork,(phil,servant,MForkRelease,fork)) m2])
=>

token(FSPobject,
ffire([ml token(ReleasedFork,(phil,servant,MForkRelease,fork)) m2], 

RevokeFork,phil.servant.MForkRelease,fork)) 
if fenabled([ml token(ReleasedFork,(phil,servant,MForkRelease,fork)) m2], 

RevokeFork,phil,servant, MForkRelease, fork) = true /\ 
favailable([ml token(ReleasedFork,(phil,servant,MForkRelease,fork)) m2], 

AvailFork) = false .
endm
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The following is the atomic predicates of component architecture Philosopher 

hurried philosophers system mentioned in the chapter 3:

mod SIG_BN_PHIL_PREDS is
protecting PHIL_COMPONENT_ARCH . 
including SATISFACTION .

subsort Marking < State .

var seat : NzNat .
var m : Marking .
var phil : PhilAgentID .
var table : TableAgentID .

op pReading : PhilAgentID -> Prop .
eq m token(Reading,phil) |= pReading(phil) = true .

op pP3 : PhilAgentID -> Prop .
eq m token(P3,phil) |= pP3(phil) = true .

op pRequestSeat : Message -> Prop .
eq m token(RequestSeat,(phil,table,MSeatRequest,seat))

|= pRequestSeat((phil,table,MSeatRequest,seat)) = true .

op pPhilLeft : Message -> Prop .
eq m token(PhilLeft,(phil,table,MPhilLeft,seat)) |=

pPhilLeft((phil,table,MPhilLeft,seat)) = true .

op pThinking : PhilAgentID NzNat -> Prop .
eq m token(Thinking,(phil,seat)) |= pThinking(phil,seat) = true .

op pP2 : PhilAgentID NzNat -> Prop .
eq m token(P2,(phil,seat)) |= pP2(phil,seat) = true .

op pEating : PhilAgentID NzNat -> Prop .
eq m token(Eating,(phil,seat)) |= pEating(phil.seat) = true . 

endm

mod PHIL-PREDS is
protecting SIG_BN_PHIL_PREDS . 
including SATISFACTION .

subsort Marking < State .

var seat : NzNat .
vars m ml : Marking .
var phil : PhilAgentID .

op pPSPOBJECT-Reading : PhilAgentID PhilAgentID -> Prop .
ceq (ml token(PSPobject, <phil,[m]>))

1= pPSPOBJECT-Reading(phil,phil) = true 
if m |= pReading(phil) = true .
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op pPSPOBJECT-Thinking : PhilAgentID PhilAgentID NzNat -> Prop . 
ceq (mi token(PSPobject, <phil,[m]>))

1= pPSPOBJECT-Thinking(phil,phil.seat) = true 
if m |= pThinking(phil.seat) = true .

op pPSPOBJECT-Eating : PhilAgentID PhilAgentID NzNat -> Prop . 
ceq (ml token(PSPobject, <phil,[m]>))

1= pPSPOBJECT-Eating(phil,phil,seat) = true 
if hi |= pEating(phil,seat) = true .

op pPSP0BJECT-P2 : PhilAgentID PhilAgentID NzNat -> Prop . 
ceq (ml token(PSPobject, <phil,[m]>))

|= pPSP0BJECT-P2(phil,phil,seat) = true 
if m |= pP2(phil,seat) = true .

op pPSP0BJECT-P3 : PhilAgentID PhilAgentID -> Prop . 
ceq (ml token(PSPobject, <phil,[m]>))

1= pPSP0BJECT-P3(phil,phil) = true 
if m |= pP3(phil) = true . 

endm
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APPENDIX C 

DERIVING HIERARCHICAL PREDICATION  

TRANSITION NETS FROM UML STATE MACHINES

C .l H PrT N s

An Hierarchical Predication Transition Net (HPrTN) [71] N  consists of (1) a finite 

hierarchical net structure (P, T, P, p), (2) an algebraic specification S P E C , and (3) 

a net inscription (<p, L, R, Mo).

(P, T, F ) is the essential net structure, where P  U T  is the set of nodes satisfying 

the condition P  fl T  = 0. P  is called the set of places and T  is called the set of 

transitions. There are two kinds of nodes for both places and transitions - elementary 

nodes (represented by solid circles or boxes) and super nodes (represented by dotted 

circles or boxes). Elementary nodes have the traditional meaning in flat Petri net 

models. Super nodes are introduced to abstract and refine data and processing in 

HPrTNs. p : P U T  —> p (P U T ) is a hierarchical mapping tha t defines the hierarchical 

relationships among the nodes in P  and T.

The underlying specification S P E C  =  (S , OP, Eq) consists of a signature S  = 

(S, OP) and a set Eq of S-equations. Signature S  — (S , OP) includes a set of sorts 

S  and a family O P  =  (Opsi„ sn ,s )  of sorted operations for s 'l , .... sn, s € S. The S- 

equations in Eq define the meanings and properties of operations in O P. S P E C  is a 

meta-language to define the tokens, labels, and constraints of an HPrTN.
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The net inscription ( p ,  L ,  R ,  M0) associates each graphical symbol of the net struc­

ture (P , T , F, p) with an entity in the underlying SP E C , and thus defines the static 

semantics of an HPrTN. Thus different HPrTNs have different net inscriptions.

<p : P  Uses (5 ) associate each place p in P  with a subset of sorts in S, which defines 

the valid values for the sort of each place. L  : F  —> L a b e l  s ( X )  is a sort-respecting 

labeling of N  where L a b e l s ( X )  ( X  is the set of sorted variables disjoint with OP) is 

a set of labels. R  : T  —>■ T e r m o p , b o o i ( X )  is a well-defined constraining mapping of 

N ,  which associates each transition t  in T  with a first order logic formula defined in 

the underlying algebraic specification. M0 : P  —>• M CONg  is a sort-respecting initial 

marking of N ,  which assigns a multi-set of tokens to each place p in P. The tokens of 

a super place are a sorted union of the tokens of its interface child places since only 

those tokens are externally accessible.

A marking M  of an HPrTN is a mapping P  —> M C O N s  from the set of places 

to multi-sets of tokens. An elementary transition is enabled if its pre-set contains 

enough tokens and its constraint is satisfied with an occurrence mode. The firing of 

an enabled elementary transition consumes the tokens in the pre-set and produces 

tokens in the post-set. A super transition is enabled if at least one of its interface 

child transitions is enabled and its firing is defined by an execution sequence of its 

child transitions, and thus its behavior is fully defined by its child transitions. The 

firing rule of a transition is formally defined in [71]. Two transitions (including the 

same transition with two different occurrence modes) can fire concurrently if they are 

not in conflict (the firing of one of them disables the other). Conflicts are resolved 

non-deterministically. The firing of an elementary transition is atomic, and the firing 

of a super transition implies the firing of some elementary transition and may not be 

atomic. We define the behavior of an HPrTN to be the set of all possible maximal 

execution sequences containing only elementary transitions. Each execution sequence 

represents consecutively reachable markings from the initial marking, in which a
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successor marking is obtained through a step (firing of some enabled transitions) 

from the predecessor marking.

C.2 M ethodology

Before we present the specific rules to formalize different components of state ma­

chines, we would like to provide the reader with the methodology tha t illustrates how 

to provide a more precise semantics for state machines.

Step 1 : Define the way to represent the events and actions associated with transi­

tions. An event is a specification of a type of observable occurrence. Some 

types of events can have parameters. In HPrTNs, an event instances is re­

alized as a token, which are specified in a uniform format so that they can 

present any parameters of events.

An action is “a specification of an executable statement that forms an 

abstraction of a computational procedure resulting in a change in the state 

of the model” [119]. An action is either synchronous or asynchronous. Since 

HPrTN can model both of them, only asynchronous actions are considered 

in my research. Synchronous actions can be transformed into two asyn­

chronous actions. In state machine diagrams, there are several types of ac­

tions: CreateAction,CallAction, ReturnAction, TerminateAction, Destroy Ac­

tion, SendAction and UninterpretedAction. The first five actions are modeled 

as call events sent to the state machine diagram of receiver and SendActions 

are modeled as signal events. For UninterpretedActions, we only consider the 

statements that can be transformed to boolean expressions used in guards 

of transitions such as assignment statements, if-then-else statements, etc.

Step 2: Formalize all states by individual HPrTNs, called formal nets, according to

proposed State Rules. In this step, only net structures of formal nets are 

specified. The algebraic specifications and net inscriptions of formal nets are 

provided during the formalization of transitions, i.e. in Step 3.
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Step 5: Realize all transitions of state machines by applying different rules related

with transitions. The firing of a transition of state machines consists of two 

actions: leaving all states in leaving(t), and entering all states in enteringit) , 

which are realized by leaving rules and entering rules respectively. As a 

result, the algebraic specification and net inscriptions of formal nets of states 

are provided. More ever, the individual formal nets are connected due to the 

realization of transitions.

Step 4 '■ Implement the implied mechanisms that are required but not realized in 

the state machines. Such mechanisms include: 1) event broadcasting: An 

event instance should be available to the whole system simultaneously; 2) 

history recording: when a history pseudostate is active, the most recent 

active substates of the state containing the pseudostate should be active; 3) 

variable sharing: The actions and guards can share a set of global variables. 

These mechanisms are critical to understand the dynamic behavior of state 

machines. One of the main advantages of our methodology is to separate 

the realizations of state machines and implied mechanisms, since the implied 

mechanisms maybe different due to the various environments.

Step 5: Finally, provide a precise semantics of derived HPrTNs, especially to solve

the conflicts introduced by state machines or the procedure of realizations. In 

addition, we have to establish the relationship between state configurations 

and markings of HPrTNs to help the understanding of transformation.

Table C.2 illustrates the rules and in which step they will be applied.

C.3 States
In state machines, a state can have five associations: deferrableEvent, entry, exit, 

doActivity and intemalTransition. deferrableEvent specifies a set of event types a
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S te p R u le s

N am e M eaning

2 S tate R ule C onstructing th e  form al net o f a  sta te

SynchState R ule R ealizing th e  syn chstates and related transitions

Sim ple Transition: L eaving R ealizing th e  leaving actions of a  sim ple transition

Sim ple Transition: Entering R ealizing th e  entering actions o f a sim ple transition

Cross Transition: Leaving R ealizing th e  leaving actions of a  cross transition

Cross Transition: E ntering R ealizing th e  entering actions o f a  cross transition

Group T ransition Leaving R ealizing th e  leaving actions of a  group transition

3 Group Transition E ntering R ealizing th e  entering actions o f  a  group transition

Initial State R ealizing th e  in itia l pseudostates and related transitions

H istory S ta te R ealizing th e  history pseud ostates and related transitions

Table 5: State Machine Diagram Formalization Rules

state machine should retain until an event type is not contained in the deferrableEvent 

of a state configuration 1 or it triggers a transition, entry/ exit describes the first/last 

action whenever the state is entered/exited, do Activity lists a sequence of atomic 

actions that should be executed when the state is active. The activity can be termi­

nated by itself or interrupted when the state is exited. intemalTransition illustrates 

a set of transitions that can be fired without exiting or reentering the state.

In the sequel, we assume each state or transition of a state machine has a dis­

tinguished name. And each place and transition in an HPrTN, the formal net of 

the state machine, has a name such as namel-name2 , where namel is the name of 

the corresponding state or transition in the state machine and name2 is given by 

rules during the derivation. nameS is omitted if the place represents a state vertex. 

-nameS specifies a set of places or transitions ending with _name2  where namel can 

be concluded unambiguous in the context. A token is illustrated in bold font enclosed 

by double quotation marks.

'T h e  deferrableEvent o f a  sta te  configuration is th e  union o f th e  deferrableEvent o f each sta te  in  
th e  sta te  configuration.
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S_IP

states
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Figure 25: The Formal Net of a Simple State

C.3.1 Sim ple States

Rule 1 (Sim ple State) A Simple state s is realized in Fig. 25:

In Fig. 25, the super transition s^DA  represents the activities described by do Activ­

ity association and the place s J P  illustrates the interruptible point of the activities. 

When the activities are finished, the s J P  has a token “FIN ISH E D ”; otherwise, 

it has a token indicating the current step based on interruptible points. The super 

transition s J T  describes internalTransition association of state s. S-DA, s_IP  and 

s J T ,  and the associated arcs can be omitted if related associations do not exist. 

The tokens in elementary place s indicate the status of state s and available event 

instances that can trigger super transition s-E x it or S-IT. Both S-Exit and s J T  

have multiple different enabling conditions. In this paper, we only illustrate these 

enabling conditions and related firing result and its detail net structure is ignored.

C.3.2 C om posite States

Rule 2 (C om posite State) A composite state s is realized by the HPrTN in Fig. 

26

Place S - I P ,  and transitions s^DA  and .sJT  are the same as the counterparts in Fig. 

25. The tokens in elementary place s indicate the status of state s and available event
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Figure 26: The Formal Net of Composite State

instances that can trigger transition S-E xit or s.E nter. A state can be in one of five 

statuses, represented by token “dot”, “s J n it”, “s_DH istory”, “s_H istory”, and 

“waiting” respectively. Place s can contain at most one of them at any time, and 

the meanings of them are as follows:

• “dot” : State s is active and idle;

•  “s J n it” : State s is active, and it is in the process of entering into its default

direct substate;

•  “s_DH istory” : State s is active, and it is in the process of entering into its

most recent active substates;

•  “s_H istory” : State s is active, and it is in the process of entering into its most

recent active direct substates;

•  “W A IT IN G ” : State s is active, and it is in the process of waiting for the exit

of its direct substates of s.

State s is inactive if place .s does not contain one of such tokens.
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In UML state machines, when a transition t fires, it exits leavingit) and enters 

entering(t) automatically. However, such atomic operation cannot be realized by a 

single transition in HPrTN since the leaving(t) is unknown without giving a state 

configuration. Therefore, the firing of a transition of state machines is implemented 

step by step. S-ExitReq, containg the exit information of its direct substates, plays 

an important role in the implementation that is described during the realization of 

transition of state machines.

s-H istory  and s-H isE nter  represents the implementation of the procedure entering 

into the most recent active direct substates. Since the most recent active direct 

substates of an and-composite state are its regions, s-H istory  and s-H isE nter  can be 

omitted in an and-composite state. Place S-History contains a token representing the 

most recent active direct substate or a token “NULL” indicating no such information 

is available and the default state is treated as the most recent active direct substate.

S-Group represents the exit of composite state s and its net structure is explained 

in the following sections. If there is no transition t such that source(t) = s, sJGroup 

can be omitted.

The entry and exit actions of a state are distributed into appropriate -E nter  or 

-E xit transitions during the realization of transitions of state machines.

To focus on the core components of state machines, the entryAction, doActivity, 

and internalTransition associations are skipped in the following sections.

C.3.3 Pseudostates

A pseudostate is an abstraction that encompasses different types of transient ver­

tices in a state machine graph. Although pseudostates are transient and have no cor­

responding status in the object, they enhance the description power of state machines, 

by making state machines easy to use and understand. UML state machines have 

seven types of pseudostates: initial, deepHistory, shallowHistory, join, fork, junction  

and choice. In this research, we do not consider history states. The derivation of
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initial state is explained in this section, and the derivation of other pseudostates is 

explained in Section C.4.4.

An initial pseudostate represents a default vertex that is the source for a single 

transition to the default state of a composite state. When the composite state becomes 

active without specifying which descendant is active, the system enters into the initial 

state, which then goes into the default state unconditionally.

In state machines, only or-composite states can contain an initial state. When an 

and-composite state becomes active without specifying the active substates explicitly, 

the system enters into the initial pseudo states of its regions simultaneously. In order 

to keep the structure of derivation uniform, we assume each and-composite state 

contains an initial pseudo state and all regions are its default states.

R u le  3 (In itia l S ta te )  Let s be a composite state containing an initial pseudostate. 

The initial pseudostate is realized by the following enabling condition on transition 

s-Enter:

• I f  elementary place s contains a token “s -In it ”, s-E nter is enabled. When it 

fires under this enabling condition, it replaces the token “s - I n i t” by ’’d o t” in 

place s and outputs token ”p -I n i t” to the default state p if  p is a composite 

state or “d o t” if p is a simple state.

Fig. 27 illustrates an example to realize an initial pseudostate by applying InitState 

rule to a composite state.

C .4 T ran sitio n s

A transition is a relationship between two state vertices indicating that the object 

leaves the source state, enters the target state and performs specific actions when 

some event instances occur provided that guard condition is satisfied. As a result of 

firing a transition, some actions will be executed.

Although a transition only has one source state vertex and one target state vertex, 

when it fires, it may exit from multiple states and enter multiple states, which makes
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Figure 27: The Formalization of Initial State

the derivation of transitions more difficult. To overcome the difficulty, transitions are 

classified into four categories: simple transitions, cross transitions, group transitions 

and compound transitions.

Definition 28 (Sim ple Transition) A transition t: Si ,s2 is a simple tran­

sition if  and only if  leaving(t) — {si} and entering(t) =  {s2 }2.

D efinition 29 (Cross Transition) A transition t: Si ,s2 iS a cross tran­

sition if  and only i f  there is a composite state s such that (si G children+(s) A s 6 

leaving(t)) or (s2 £ children+(s) A s 6 entering(t)). All such composite states are 

called source/target cover states of t .  A source/target cover state s is the outermost 

source/target cover state i f  any other source/target cover states are descendants of s.

Definition 30 (Group Transition) A transition t: S i  ,s 2 is a group tran­

sition if  and only if  Si or s2 is a composite state.

D efinition 31 (C om pound Transition) A set of transitions is a compound tran­

sition if and only if  firing all transitions of the set leads the system from a state 

configuration to another state configuration; and for each transition, either source or 

target state vertex is a pseudostate.

2 In the definitions of simple, cross and group transitions, both s\ and s 2 must be states, not 
pseudostates
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Figure 28: The Formalization of a Simple Transition

However, the categories of the transitions are not disjoint, i.e. a transition can be a 

cross transition, and a group transition simultaneously. Here, the derivation of each 

category is explained; then the complex cases are considered.

C .4.1 S im ple T ran sitio n s

A simple transition leaves one state-source state and enters one state-target state 

when it fires. The following rule is used to realize a simple transition.

R u le  4 (S im ple T ran sitio n ) Let transition t: si s 2 be a simple transition

in a state machine. The transition t is realized by the HPrTN in Fig. 28.

s i-E x it  is enabled if place .sj contains a token “d o t” and a token “e” representing 

the occurrence of an event instance e, provided guard c holds. When it fires under 

such enabling condition, a token “d o t” is output to target place s2) and the exit 

action of state Si and the entry action of state s2 are executed sequentially.

However, a transition in state machines may have no trigger event. In such case, 

it is called a completion transition. A completion transition is enabled if and only if 

the activity denoted by doActivity association in the source state has been completed 

provided the guard holds. Thus, in the above rule, if t is a completion transition, 

s i-E x it may be enabled only if the token contained in S i-IP  is “F IN IS H E D ” .

C.4.2 C ross T ran sitio n s

When a cross transition fires, it does not only exit (enter) the source (target, resp.) 

state; but also exits (enters) the source (target, resp.) cover states.

For a cross transition with a source cover state, when it fires, before the source cover 

state exits, any other active substates of it should abort. Thus the derivation of a 

cross transition becomes complex since the source cover state has to notify its children

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

to exit. Also, the exitActions of the states should be executed in the order from the 

innermost substate (s) to the outermost source cover state. In order to modeling such 

situations, a special event called “s_A bort” or “s_C om pletion” for each composite 

state s is introduced. Such events give the substates an opportunity to abort. The 

following two rules assume that sourceft) and target(t) are simple states.

R u le  5 (C ross T ran s itio n  Leaving) Let transition t: Sj s2 be a cross

transition and s be the outermost source cover state of t .  Transition t can be realized 

by adding the following enabling conditions:

1. The enabling condition of s i-E x it is the same as s i-E x it in Fig. 28; when 

it fires, a token “s -A b o r t” if t is a completion transition, otherwise a token 

“s-C o m p le tio n ” is output to each simple state that is a descendant of s, and 

also, a token “S2 ” is sent to sFExitReq such that S2 6 childrens').

2. For each simple state p such that p G children^(s), transition p -E xit is en­

abled if p contains a token “d o t”, and either a token “s -A b o r t” or a token 

“s -C o m p le tio n ” (In such case, s J P  should contain a token “F IN IS H E D ”). 

When it fires under such enabling condition, a token “N U L L ” is output to 

s'-ExitReq such that p G children(s').

3. For each composite state p such that p G children^ (s), following enabling con­

ditions is added to transition pJExit:

• p-E xit is enabled if p^ExitReq contains a token “N U L L  (If p is an or- 

composite state) or n tokens “N U L L ” (If p is an and-composite state). 

In such case, when p.Exit, fires, it output a token “N U L L ” to s'-ExitReq  

where p G ch ild ren s ') .

• p-E xit is enabled if  p-ExitReq contains a token “I” (I fp is an or-composite 

state) or a token “I” and n-1 tokens “N U L L ” (If p is an and-composite
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Figure 29: The Formalization of a Cross Transition(Leaving)

state) where I is a place. I f  p -E xit fires under this enabling condition, it 

outputs a token “I” to s'-ExitReq where p G children(s').

4- S-E xit is enabled if s_ExitReq contains a token “I” (I f s is an or-composite 

state) or a token “I” and n-1 tokens “N U L L ” (If s is an and-composite state). 

When it fires under this enabling condition, it outputs a token “U n i t ” (I is a 

composite state) or a token “d o t” (I is a simple state) to place I.

Fig. 29 represents the derivation of a cross transition t  with outermost source cover 

state s.

Actually, enabling conditions 1, 2, and 3 represent the step-by-step exit procedure 

from innermost substates to the outermost source cover state; and the enabling con­

dition 4 models the procedure of leaving the outermost source cover state and enters 

into the target state.

In state machines, when a transition fires, ancestor states of the target state and 

other related states are active at the same time. In our derivation, we realize the 

procedure step by step.
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Figure 30: The Formalization of a Cross Transition (Entering)

R u le  6 (C ross T ran s itio n  E n te rin g ) Let transition t: Sj <S2 fre a cross

transition and s1, . . . ,  sn be the set of target cover states of t such that sl £

children(si_1) fo r any i £ [2,n] and s2 £ children(sn) . The enabling condition 

of S i-E xit is the same as the enabling condition of S i-E xit in Fig. 28, and when it 

fires, a token “s 1s 2___ sn-S2 ” is output to place s1#

Fig. 30 illustrates a derivation of cross transition t  with outermost target cover 

state Si. Generally speaking, for a composite state s, s-E nter  is enabled if one of the 

following conditions holds:

• Place s contains a token “so -S i-^  snv such that So — s and s* £

children(si-i) for any i = l , 2 , . . . , n .  In such case, when it fires, a token

“dot” is output to place s, and a token “si_S2  sn” is output to place si.

If s is an and-composite state, it also sends a token “dot” to place s' where 

s' £ children's) and s' is a simple state, or a token “s '-In it” to place s' where 

s' £ children(s) A s' s\ and s' is a composite state.

•  Place s contains a token “s_p” such tha t p £ children(s). In such case, when it 

fires, a token “dot” is output to place s and place p respectively. If s is an and- 

composite state, it also sent a token “dot” to place s' where s' £ children's) 

and s' is a simple state, or a token “s 'J n i t ” to place s' where s' £ children(s) 

and s' is a composite state.
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C.4.3 Group Transition

Assume transition t is not a cross transition in the following two rules tha t deal 

with derivation of group transitions.

Rule 7 (Group Transition Leaving) Let t: si - f M s2 be a group transition, 

where children(si) ^  0 and children(s2) — 0. The transition t is realized by adding 

the following enabling conditions:

• Si-Group is enabled if si contains a token “d o t” and a token “e ” provided guard 

c holds. When it fires, it outputs a token “w a itin g ” and a token “s2” to place 

,s1; and outputs a token “si-Abort ” i f t  is not a completion transition, otherwise 

“si-C om pletion” to all simple states that are descendants of state s\.

• For each simple state p such that p € children* (si), enabling condition of 

P -E xit triggered by token A b o r t” or “-C o m p le tio n ” is the same as the 

enabling condition 2 in Cross Transition Leaving Rule;

• For each composite state p such that p € children* (sf ) , the enabling condition 

3 in Cross Transition Leaving Rule is also added to transition p-E xit;

• s i-E x it is enabled if s\ contains a token “w a itin g ” and a token “s2 ”, and 

Si-ExitReq contains enough “N U L L ” tokens (If s\ is an and-composite state, 

enough means each direct substate contributed a “N U L L ” token. I f  Si is an 

or-composite state, enough means one). When it fires in such case, it outputs 

a token “d o t” to place s2.

Fig. 31 describes the derivation of group transition t: si s2 .

R ule 8 (Group Transition Entering) Let t: si s2 be a group transition,

where children(s2) ^  0 and children(si) =  0. Such a transition is realized by adding 

the following enabling condition:
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Figure 31: The Formalization of a Group Transition(leaving)

• Si-E xit is enabled if place Si contains a token “d o t” and a token “e ” repre­

senting an event instance e. When it fires, a token “s1s 2___ s n ” is output to

place s1 where for any i =  2 , . . . ,  n, sl G children's1-1) A sn =  s^ A (3states' : 

si G ch ild ren s ') A s1 G children(s')).

As we said before, a transition t : Si s2 can be a cross transition and a group

transition simultaneously. Thus t can be one of the following cases:

• children(si) 0 and s is the outermost target cover state of transition t: Such 

case can be solved by applying Group Transition Leaving Rule, then Cross 

Transition Entering Rule;

• children(si) 0 and s is the outermost source cover state of transition t: This 

case can be solved by applying Group Transition Leaving Rule first. Then 

treating Si as a simple state and apply Cross Transition Leaving Rule;

• children{sfi) 0 and s is the outermost source cover state of transition t: Such 

case can be solved by applying Cross Transition Leaving Rule, then Group 

Transition Entering Rule;

• children(s2) 0 and s is the outermost target cover state of transition t. 

Such case can be solved by applying Cross Transition Entering Rule with a
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minor modification: when Si-E xit is fired, a token “s°_s1_s2__   sn” such that

s° =  s A Vi = 1, . . . ,  n : sl G ch ild ren^1”1) A sn =  s2, is output to s.

C.4.4 C o m p o u n d  T ran s itio n

A transition connects two state vertices, but maybe one or both state vertices are 

transient pseudostates. These transient state vertexes include fork, join, junction, 

and choice, and history formalized in Sec. C.3.3.

A compound transition consists of multiple sets of transitions that should be fired 

sequentially. If a set of transitions of a compound transition is fired, it is guaran­

teed that the next set of transitions should be fired since a state machine cannot be 

’’stuck” at some transient state vertices. Such situations are hard to formalize since 

HPrTNs cannot predicate if a transition is enabled. However, some simple compound 

transitions are easy to handle.

Unlike the classic Statechart, some constraints are imposed on the compound tran­

sitions in state machines for practical reasons. Some of them affecting our derivations 

are listed below:

•  If the source state vertex of a transition is a fork pseudostate, then the target 

state vertex must be a state and the transition cannot have guards and triggers;

•  If the target state vertex of a transition is a join  pseudostate, the source state 

vertex must be a state and the transition cannot have guards and triggers.

The transition cannot have triggers if the source state vertices are pseudostates.

R ule 9 (C o m p o u n d  T ransition : Jo in ) Let a set of states s i , . . . ,  sm be concurrent

3. For each state Si, there is a transition U: ——l—> s from Si to the same join

pseudostate s. And there is a transition t: s — s' . Assume transitions t i , . . . , t m

3 A set of states is concurrent if and only if  any two of them are not ancestrally related and they 
can appear in a state configuration.
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Figure 32: The Formalization of a Compound Transition(Join)

share an outermost source cover state s0SC 4. Thus, this compound transition can be 

handled in the following way:

• Transitions t i , . . . , tm are represented by a group transition: t ' : sosc — 

s Thus, we apply the Group Transition Rules on t '.

•  Pseudostate s is treated as a simple state. Thus Simple State Rule is applied;

• Applying appropriate rules to the transition t.

Fig. 32 delineates the statechart diagram and corresponding HPrTN by applying 

Compound Transition Join Rule.

However, we have to guarantee that when soscJSroup is enabled, state sj , . . . ,  sn is 

active. This can be done by obtaining current state configuration from place Current, 

which is explained in next section.

A compound transition can be enabled only if a state machine can leave a state 

configuration and enter another state configuration. In other words, a state machine

4If they do not share an outermost source cover state, there is a transition among them such that 
its source and target states are concurrent. Such a transition is not structured, and not encouraqed 
in UML.
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cannot be stuck in a pseudostate. To justify whether a compound transition is enabled 

or not, all the guard conditions along a compound transition should be evaluated at 

the beginning. Thus the guard c is evaluated in transition soscJGlroup. However, 

when a state machine enters into a pseudostate, it may execute some actions (in this 

case, it is ax, . . . ,  am) that change the truth value of guard c. In order to find such 

exception, the guard c is reevaluated in s-E xit.

Rule 10 (C om pound Transition:Fork) Let a set of states s i , . . . , s m be concur­

rent. For each state s^, there is a transition L: s —%■ where s is a fork pseudostate. 

And there is a transition t: s' .s , where s' is a state vertex. Such case can be

handled in the following ways:

• Fork pseudostate s is treated as a simple state and Simple State Rule is applied;

• Applying appropriate rules to transition t;

• Transitions t \ , . . . ,  tm are represented by a enabling condition of transition

S-Exit. s -E x it is enabled if  place s contains a token. When it fires, it out­

puts appropriate tokens to each place Si according to corresponding entering 

rules.

Rule 11 (C om pound Transition:Junction) Let s i , . . . , s m be a set of states; s a

junction pseudostate and s ^ , . . . , ^  a set of states. There are transitions such that
. /. /

£j.- Si e%'iC%̂aLf s , i = 1, . . .  ,m ; and transitions such that s —L.fL> s[ i — 1,, k. 

Such case can be formalized in the following ways:

• Junction pseudostate s is treated as a simple state and Simple State Rule is 

applied;

• Applying appropriate rules to each transition t f i  =  1, . . .  ,m)  and tf-(j = 

1 , . . . , k ) .
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In order to avoid that a state machine is stuck in a junction pseudostate, the guard 

of Si-Exit is changed to Cj A (c[ V ... V c'k) to delineate the enabling condition of the 

compound transition. However, a state machine can also be stuck in pseudostate s 

if action a* affects the evaluation of the following conditions. In such case, place s 

contains a token that cannot be consumed.

R ule  12 (C o m p o u n d  T ransition :C ho ice) Let be a set of states; s a

state and s' a choice pseudostate. There are atransitions such that ti'. s' ;

i =  1, . . .  ,m ; and a transition t: s —<̂ lll—» s ' . Such case can be formalized in the

following ways:

• Choice pseudostate s is treated as a simple state and Simple State Rule is ap­

plied;

• Applying appropriate rules to each transition =  1, . . .  ,m) and t.

As the same reason explained in join and junction rules, the guard of Si-Exit is

changed to c A (ci V ... V cm).

A simple compound transition can be formalized using the above rules. For the 

complicated compound transitions that contain two or more pseudostates, we have 

to calculate the enabling condition at the beginning. Such calculation can be found 

in [65].
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