
www.manaraa.com

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A FRAMEWORK FOR TRANSFORMING, ANALYZING, AND REALIZING

SOFTWARE DESIGNS IN UNIFIED MODELING LANGUAGE

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Zhijiang Dong

2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 3235930

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3235930

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

To: Dean Vish Prasad
College of Engineering and Computing

This dissertation, written by Zhijiang Dong, and entitled A Framework for
Transforming, Analyzing, and Realizing Software Designs in Unified Modeling
Language, having been approved in respect to style and intellectual content, is
referred to you for judgment.

We have read this dissertation and recommend that it be approved.

A
Shu-Ching Chen

^ U<k J u
Peter J. Clarke

Yi Deng

Xudong H^f'Majbr Professor

Date of Defense: July 14, 2006

The dissertation of Zhijiang Dong is approved.

\ A & € v
Dean Vish Prase

College of Engineering and, tg

^ / i n t e r i m Dean Stephan L. Mintz
University Graduate School

Florida International University, 2006

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

To my wife and son.

DEDICATION

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Xudong He, for his support,

patience, and encouragement throughout my graduate studies. W ithout his technical

and editorial advice, I would have never made this dissertation. He has taught me

invaluable lessons and insights as well on the working of academic research in general.

My thanks also go to the members of my committee, Shu-Ching Chen, Peter J Clarke,

Yi Deng, Raimund K. Ege, and Jie Mi, for their guidance, assistance, encouragement

and suggestions.

I am also grateful to my colleagues, Gonzalo Argote, Zengfai Dai, Junhua Ding,

Shu Gao, Ying Huang, Lian Mo, Huiqun Yu, Tianjun Shi, Weixiang Sun, for their

help and suggestions concerning both research and life in Miami during past several

years. The friendship of them makes the research wonderful and life colorful.

Last but not least, I also wish to thank my wife, Yujian Fu. Mere words are not

enough to express the debt of gratitude and respect I have for her. She took on much

more than her share of the burden to enable me complete this effort. My parents

receive my deepest gratitude and love for their dedication and many years of support

leading to this dissertation.

This work is supported in part by NSF under grant HRD-0317692, and by NASA

under grant NAG 2-1440. I also appreciate the financial support from the University

Graduate School, Florida International University in the form of Dissertation Year

Fellowship.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT OF THE DISSERTATION

A FRAMEWORK FOR TRANSFORMING, ANALYZING, AND REALIZING

SOFTWARE DESIGNS IN UNIFIED MODELING LANGUAGE

by

Zhijiang Dong

Florida International University

Miami, Florida

Professor Xudong He, Major Professor

Unified Modeling Language (UML) is the most comprehensive and widely accepted

object-oriented modeling language due to its multi-paradigm modeling capabilities

and easy to use graphical notations, with strong international organizational support

and industrial production quality tool support. However, there is a lack of precise

definition of the semantics of individual UML notations as well as the relationships

among multiple UML models, which often introduces incomplete and inconsistent

problems for software designs in UML, especially for complex systems. Furthermore,

there is a lack of methodologies to ensure a correct implementation from a given UML

design. The purpose of this investigation is to verify and validate software designs in

UML, and to provide dependability assurance for the realization of a UML design.

In my research, an approach is proposed to transform UML diagrams into a se­

mantic domain, which is a formal component-based framework. The framework I

proposed consists of components and interactions through message passing, which are

modeled by two-layer algebraic high-level nets and transformation rules respectively.

In the transformation approach, class diagrams, state machine diagrams and activity

diagrams are transformed into component models, and transformation rules are ex­

tracted from interaction diagrams. By applying transformation rules to component

models, a (sub)system model of one or more scenarios can be constructed. Various

techniques such as model checking, Petri net analysis techniques can be adopted to

check if UML designs are complete or consistent. A new component called property

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

parser was developed and merged into the tool SAM Parser, which realize (sub)system

models automatically. The property parser generates and weaves runtime monitoring

code into system implementations automatically for dependability assurance. The

framework in the investigation is creative and flexible since it not only can be ex­

plored to verify and validate UML designs, but also provides an approach to build

models for various scenarios. As a result of my research, several kinds of previous

ignored behavioral inconsistencies can be detected.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

CHAPTER PAGE

1 In tro d u c tio n .. 1
1.1 P ro b le m ... 1
1.2 A p p ro a c h ... 3
1.3 B e n e f its ... 5
1.4 Assumptions and S co p es .. 5
1.5 Thesis Overview.. 7

2 Theoretic F o u n d a tio n .. 9
2.1 In troduction .. 9
2.2 Petri N e t s 10

2.2.1 Place/Transition Nets ... 10
2.2.2 Algebraic High Level N e t s ... 12

2.3 Category T h e o r y ... 15
2.4 Algebraic High-Level Net Transformation System s................................ 19
2.5 S u m m a ry .. 23

3 Component-based System Modeling Framework... 24
3.1 Introduction 24
3.2 Related W o rk ... 25
3.3 Informal Introduction to the F ram ew o rk .. 27
3.4 Component M odels 32

3.4.1 Function N e ts ... 32
3.4.2 Component N e t s ... 35

3.5 Transformation R u les 40
3.5.1 Refinement R u le s ... 41
3.5.2 Creation R u l e s .. 43
3.5.3 Destruction R u les ... 44
3.5.4 Interaction R u le s ... 46
3.5.5 Creation/Destruction Message Passing R u les.............................. 47

3.6 Component Com position.......................... 49
3.7 A n a ly sis ... 49

3.7.1 Function n e t s ... 50
3.7.2 System n e t s ... 51

3.8 S u m m a ry .. 57

4 Verification and Validation of UML D esigns... 59
4.1 Introduction . .. 59
4.2 Related W orks.. 60

4.2.1 Formalization of UML Diagrams.. 60
4.2.2 Inconsistency Detection .. 64

4.3 Running Exam ple... 66
4.4 Algebraic View of UML Class Diagrams .. 66
4.5 Formalization of State M a c h in e .. 69

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.6 Formalization of Activity D iag ram s.. 71
4.7 Transformation Rules From Interaction D iag ram s............................... 74
4.8 Model Inconsistency ... 75
4!9 S u m m a ry .. 79

5 Implementation and Verification of SAM Architecture Designs................... 81
5.1 Introduction .. 81
5.2 Related W orks.. 82
5.3 Software Architecture M odel... 85

5.3.1 S A M 85
5.3.2 An Example of S A M .. 85

5.4 Methodology .. 89
5.5 Implementation of Petri Nets ... 91
5.6 Implementation of Run-time V erification.. 93
5.7 Experimental R esu lts ... 98
5.8 Summary ... 101

6 C onclusion .. 103
6.1 Overview... 103
6.2 C ontribu tions.. 104
6.3 Future W ork... 105

LIST OF R E F E R E N C E S ... 107

A PPE N D IC E S... 121

V I T A ... 149

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

TABLE PAGE

1 Benefits of Dissertation R e s e a rc h ... 5

2 Transition Firing Sequence of Watson Joining T ab le 33

3 Summary of Production T ypes... 41

4 Generated Files for Coffee M ach in e .. 99

5 State Machine Diagram Formalization R u le s .. 133

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

FIGURE PAGE

1 Overview of Investigation A pproach.. 4

2 Scope: a Subset of U M L ... 6

3 Petri Net of Consumer-Producer S y s te m .. 12

4 Algebraic High-Level Net of Consumer-Producer S y s te m 15

5 Component Models in Hurried Philosopher Exam ple............................... 29

6 A Transformation Example.. 31

7 System Net of Dining Philosopher Example .. 32

8 The Semantics of a C o m p o n en t.. 39

9 A Refinement Production .. 42

10 A Creation P ro d u ctio n .. 43

11 A Destruction P ro d u c tio n .. 44

12 An Interaction P ro d u ctio n ... 47

13 A Creation Message Passing P ro d u c tio n .. 48

14 The Valid Function Net of the Servant .. 51

15 A Simple Online Shopping System ... 67

16 UML Formalization P a t t e r n ... 68

17 Petri Net Representation of A ctions.. 73

18 Transformation Rule for Passing Message Addltem 75

19 SAM Parser O v e rv iew .. 82

20 A SAM Architecture M o d e l ... 86

21 SAM Model of Coffee M achine.. 87

22 Behavior of Subcomponents in CoffeeM achine....................................... 88

23 Framework of SAM P a rs e r .. 90

24 Petri nets satisfying or violating guidance... 93

25 The Formal Net of a Simple S ta te ... 134

26 The Formal Net of Composite S ta te .. 135

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27 The Formalization of Initial S t a t e .. 137

28 The Formalization of a Simple Transition ... 139

29 The Formalization of a Cross Transition (L eav ing)............................... 141

30 The Formalization of a Cross Transition(Entering).................. 142

31 The Formalization of a Group Transition (leav ing)............................... 144

32 The Formalization of a Compound T ransition(Join)............................ 146

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 1

INTRODUCTION

1.1 Problem

Modeling languages play a critical role in software development process. One of

the major functionalities of modeling languages is to provide a complete and valid

system model based on which various techniques such as model checking, theorem

proving, and refinement are applied to improve quality and efficiency in terms of cost

and time. Last several decades have witnessed the emergence of more than 50 mod­

eling languages [51]. Currently, Unified Modeling Language (UML for short) [120]

is the most comprehensive and accepted object-oriented, multi-paradigm modeling

language. UML supports the multi-view approach, i.e. artifacts created in the de­

velopment process for various views are modeled by various kinds of UML concepts.

More specifically, class diagrams specify static structure of systems; statechart dia­

grams describe behavior of individual classifier; activity diagrams emphasize control

flows and object flows for coordinating low-layer behaviors, rather than which clas­

sifier owns these behaviors; interaction diagrams including sequence diagrams and

communication diagrams realize use cases by describing interactions of objects to

complete a task.

Generally speaking, UML designs capture system requirements, establish abstract

models, and serve as the corner stone for system implementation. Therefore, soft­

ware quality, costs, adherence to schedule largely depends on the “quality” of UML

designs we build. More specifically UML designs should meet these characteristics:

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

completeness, validness, and consistency. Completeness indicates that all important

system aspects should have been captured before entering the next phrase. Validness

means UML designs should satisfy expected system properties that are not specified

by UML designs. Consistency implies there is no conflict information among UML

designs. Unfortunately such goal is hard to achieve due to characteristic of modeling

languages as well as characteristics of UML.

First, the lack of precise semantics hinders further analysis, and brings misunder­

standing of models, which cause errors in the final system model. System requirements

and models should be easy to understand, not only for developers, but also for clients

and end users who generally have little knowledge of modeling languages and soft­

ware engineering. So modeling languages are generally informal languages that lack

precise and unambiguous semantics. In other words, it is possible that peoples such

as clients, developers and designers may have different, even conflict understanding

for the same concept, artifact, or model. Although UML provides a good balance be­

tween understandability and formal syntax, its semantics is defined by plain natural

language, which is in general ambiguous, and confusing.

Second, inconsistency is introduced by the multi-view and multi-notation approach.

UML supports the multi-view and multi-notation approach, which helps designers

focus on individual viewpoint so that the models are more manageable and less error-

prone. However, inconsistencies arise because “the models overlap - that is they

incorporate elements which refer to common aspects of the system under development

- and make assertions about these aspects which are not jointly satisfiable as they

stand, or under certain conditions” [147]. The detection of inconsistencies is not easy

due to the multi-notations.

Third, system complexity, project pressure of cost and schedule may ignore impor­

tant aspects and scenario, and may introduce undetected errors as well as conflict

information. W ith the progress of software development technology, systems to be

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

built are becoming more and more complex, and more and more people acting as dif­

ferent roles are involved in system development process. W ith heavy time pressure to

market and limited resource, there are more chances to establish a poor system model

in terms of undetected errors. Even worse, some important aspects and scenario may

be ignored in the final model since they are originally thought as trivial and there is

no time or cost to model these “trivial” aspects.

Fourth, system requirements from which system models are built may contain con­

flict information since requirements from stakeholders of different interests are related,

and even on opponent sides.

All above matters make it hard to build a valid, complete, and consistent UML

designs. In this investigation, I proposed an approach to verify and validate UML

designs. Since a “correct” UML design does not guarantee a “correct” system im­

plementation due to the error-prone realization process, a tool was developed for

dependability assurance to generate runtime monitor code to verify system proper­

ties during program execution.

1.2 Approach

The approach to verify and validate UML designs is portrayed in Fig. 1.

The core part of the approach is the proposed component-based framework, which

can be explored to model systems consisting of components that interact with each

other through message passing. This framework provides a formal way to model com­

ponents and interactions in Petri nets and transformation rules respectively. A whole

(sub)system model can be constructed by integrating component models together ac­

cording to interaction models, just like the assembly of numerous small interlocking

and tesellating pieces to produce a complete picture.

Given UML designs of a system, we can transform various UML diagrams, i.e.

class diagrams, state machine diagrams, activity diagrams and interaction diagrams

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UML Diagrams

class
diagrams

state machine
diagrams

activity
diagrams

interaction
diagrams

Feedback Formalization Extraction

Analysis Techniques
(Model Checking,
Petri Net Analysis, etc.)

Algebraic High
Level nets

Transformation
Rules

Rewriting

Component-based
FrameworkSystem Nets

(AHL-Nets)
Consistency
Rules

System
Properties

Property Parser Structure & Behavior Parser
SAM Parser

weaved into
Aspect! Java-=■ ArchJava

Figure 1: Overview of Investigation Approach

into corresponding parts of the framework according to given rules. More specifi­

cally, class diagrams, state machine diagrams, and activity diagrams are formalized

and integrated into component models, and transformation rules can be extracted

from interaction diagrams to specify the possible message passing between various

component models.

Although various analysis techniques such as model checking, theorem proving, and

Petri net analysis techniques can be explored to analyze system models constructed in

the framework, we chose model checking to verify system models against system prop­

erties and detect inconsistency among UML designs. Petri net analysis techniques

maybe used as a complement to detect some specific inconsistencies.

A correct and consistent UML design cannot guarantee a complete and correct

system realization because of the informal and error-prone implementation process.

A component - Property Parser was developed and plugged into the tool SAM

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Parser for dependability assurance that automatically realize system models con­

structed from the framework. For given properties, Property Parser generates

runtime monitor code automatically, which is weaved into functionality code through

aspect-oriented programming. Therefore, properties can be verified during program

execution.

The remainder of this dissertation will trace each part of Fig. 1, demonstrating how

to verify and validate UML designs and how to generate and weave runtime monitor

code for dependability assurance.

1.3 Benefits

The contributions and benefits that follow from this investigation are enumerated

in Table 1, along with an explanation of how each of them are realized. The summary

chapter 6 gives a much more detailed explanation of each benefit or contribution and

how each was realized in the dissertation.

Table 1: Benefits of Dissertation Research
Benefit Explanation

1 Development of a formal
component-based frame­
work to model systems

Components and their interactions are modeled by
Petri nets and transformation rules, respectively.
The (sub) system model can be constructed by ap­
plying transformation rules to components accord­
ing to analysis needs.

2 Formalization of UML dia­
grams

Class diagrams and state machine diagrams are
formalized by algebraic specifications and Petri
nets, respectively.

3 Development of a process to
integrate UML designs into
a system model

Application of the proposed framework to UML
designs

4 Development of a process to
validate and verify UML de­
signs

Model checking and other Petri net analysis tech­
niques are explored to analyze system models ob­
tained from UML designs.

5 Development of a tool to
implement system models
and validate the implemen­
tation automatedly

Incorporation of runtime verification technique
and aspect-oriented programming in the tool

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.4 A ssum ptions and Scopes

It is assumed that:

1. This investigation is limited to the UML 2.0.

2. UML supporting CASE tools check initial specification consistency (within an

individual diagram) and compliance to UML syntax. The application of my

work on invalid UML specifications would be unpredictable.

3. This investigation only focuses on a subset of UML depicted in Fig. 2. Since the

investigation becomes too complicated when UML diagrams are used in broad

situations as indicated in UML whitebook [120], we only consider the most

popular usage of involved diagrams, which are summarized as the following:

M essage Object StructureFeature

Interaction O

0,,1
PropertyC lass

Region State

Event Transition
— ad— ifer

A ssociationOperationActivity

Action

CreateObj ectActi onInvocationAction DestroyObjectAction A ccept EventAction

CallAction SendSignalAction SendObjectAction Accept CallAction

CallO perationAction

Figure 2: Scope: a Subset of UML

• Each non-primitive (see section 4.4) class operation is described by an

activity;

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• The actions in activities are restricted to those actions as showed in the

figure. Other actions such as link related actions and variable related

actions are represented as invocation actions due to the formalization of

class diagrams based on algebraic specifications. Some other actions such

as ReadExtentAction, RaiseException are just ignored in the current work.

• Only MessageTrigger is allowed in current work. Other triggers such as

TimeTrigger and ChangeTrigger are not considered.

• Time and timing concepts in interaction diagrams are just ignored in the

current work since they are out of modeling power of non-timed Petri nets.

Additionally, we assume that each object in interaction diagrams refers to a

class declared in the class diagram. There is a statechart diagram for each class

to describe its behavior. Furthermore, each activity in statechart diagrams is

specified by an activity diagram.

4. There are different kinds of inconsistencies [94, 95]: horizontal v.s. vertical

inconsistency, inter- v.s. intra-inconsistency, and syntactic v.s. semantic in­

consistency. My investigation is limited to horizontal, semantic, and inter­

inconsistency.

1.5 Thesis Overview

Currently, UML is the most popular object oriented modeling language. As a

multi-paradigm language, UML can enjoy the benefits by modeling various system

aspects in different UML diagrams. Unfortunately, UML designs also inherit the

inconsistency problems - multiple UML designs may contain conflict information.

Things are even worse since a correct and consistent UML design does not guarantee

a valid system implementation. My dissertation describes the proposed framework

through which UML designs are validated and verified, and the approach to generate

and weave runtime monitor code automatically for dependability assurance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 briefly illustrates Algebraic High Level nets, category theory, and trans­

formation system as a background to understanding the proposed framework. The

related works are distributed to the following three chapters to cover specific topics.

The component-based system modeling framework is given in Chapter 3. The

framework consists of several parts: the way to model components and interactions,

and the approach to compose system models by applying transformation rules.

Chapter 4 shows the approach to verify and validate UML designs by exploring

the framework described in Chapter 3. More specifically, component models are

constructed from class diagrams, state machine diagrams, and activity diagrams,

while transformation rules are extracted from interaction diagrams. Then different

analysis techniques can be adopted to analyze the system net that are constructed

by applying transformation rules.

The automated system implementation from system models is given in Chapter 5.

The tool presented in this chapter can be used to implement automatically system

models constructed in Chapter 4, and more importantly, to validate the implementa­

tion by adopting runtime verification technique and aspect-oriented programming.

Chapter 6 contains the conclusions from this investigation and provides recommen­

dation for future research.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2

THEORETIC FOUNDATION

2.1 Introduction

It was stated in Chapter 1 that the proposed framework integrates different theories

seamlessly, i.e. Petri nets, category theory, and graph transformation.

Petri nets [112], introduced by Dr. Carl Adam Petri in his PhD thesis (Kom-

munikation mit Automaten), is a formal and graphical appealing language that is

appropriate for modeling concurrent and distributed systems. A main motivation for

the use of Petri nets in concurrent and distributed systems modeling is the possibility

to formally state and decide certain desirable system properties, such as liveness and

boundedness. There are in general two kinds of Petri nets: low-level Petri nets and

high-level Petri nets. Although they have the same expressive power, high level Petri

nets provide a more succinct and manageable system description.

Category theory [26] deals in an abstract way with mathematical structures and

relationships among them. Categories are an abstract mathematical construct con­

sisting of category objects and category arrows. In general, category objects are the

objects in the category of interest while category arrows define a morphism from the

internal structure of one category object to another. Instead of focusing merely on the

individual objects possessing a given structure, as mathematical theories have tradi­

tionally done, category theory emphasizes the morphisms - the structure-preserving

processes - between these objects. In this research, category objects of interests are

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

algebraic specifications, Petri nets, and category arrows are specification morphisms

and Petri net morphisms.

In graph theory, graph transformation/rewriting is a system of rewriting for graphs.

During the application of graph rewriting to a graph, subgraphs are replaced according

to the rules of a rewrite system. There are several approaches to graph rewriting,

one of them is the algebraic approach, which is based upon category theory. Actually

the algebraic approach is divided into at least three sub approaches: the double-

pushout approach (DPO), the single-pushout approach (SPO) and (more recently)

the pullback approach. In this research, DPO approach is chosen to change Petri nets

due to the strong constraints on applying rules to rewrite graphs.

In this chapter, Section 2 gives a brief introduction of Petri nets, including

Place/Transition Nets and algebraic high-level nets. Category theory and algebraic

high-level net transformation systems are illustrated in Sections 3 and 4 respectively.

2.2 Petri N ets

In this section, I introduce two kinds of Petri nets: Place/Transition nets (a variant

of low level Petri nets) and algebraic high-level nets (a variant of high level Petri nets).

2.2.1 P lace/T ransition N ets

Definition 1 (P lace/T ransition N ets) A place/transition net is a 5-tuple

(P , T, F, W, M 0), where

• P is a finite and non-empty set of places,

• T is a finite and non-empty set of transitions disjoint from P, i.e. P D T = 0,

• F is the set of arcs, F C (P x T) U (T x P),

• W is the arc weight function, W : F -—>• N;

• M0 e M is the initial marking, where M is the set of markings, M = {M :

P — ► N}.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Places, transitions, and arcs are the basic structures in Petri nets. Places model

system status; transitions indicate actions a system may take; while arcs illustrate

data flows as well as control flows. A place can contain data called tokens. A marking

of a Place/Transition net is a distribution of tokens over all places. The initial marking

Mo defines the initial system status.

For convenience, we introduce symbols *p (p*, respectively) for a place p G P

to illustrate the set of transitions t such that (t,p) G F ((p , t) G F, respectively).

Similarly, we can define *t (t*, respectively) for a transition t G T.

Petri nets are executable. More specifically, transitions act on input tokens by a

process known as firing. A transition is enabled if it can fire, i.e., there are enough

tokens in every input place. When a transition fires, it consumes tokens from input

places, performs some processing task, and places a specified number of tokens into

each output place. It does this atomically, i.e. in one single non-preemptible step.

This is the dynamic semantics of Petri nets, which are specified formally by the

following definitions.

D efin ition 2 Let {P. T, F, W, M0) be a Place/Transition net. A transition is enabled

at a marking M if and only if (iff for short): Vp G* t : M (p) > W (p,t).

A transition t leads (can be fired) from a marking M to a marking M ' (M[t > M '

for short) iff t is enabled at M and: Vp G P : M'(p) = M(p) — W(p, t) + W (t,p).

Execution of Petri nets is nondeterministic. In other words, multiple transitions

can be enabled at the same time, and any one of which can fire. This characteristic

makes Petri nets suitable for modeling concurrent behavior of distributed systems.

Figure 3 shows a Place/Transition net for a consumer and producer sys­

tem. The places, transitions, arcs are denoted by circles, rectangles, and

arrows, respectively. A dot indicates a token in a specific place. The

weight of a arc is described by the integer along an arrow (1 by default).

The initial marking is (idle=l, ready=0, storage=0, accepted=0, waiting

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

storage
sendproduce accept

consume

• waitingidle

ConsumerProducer

Figure 3: Petri Net of Consumer-Producer System

=2) (abbreviated as (1,0,0,0,2)). Then the following is a firing sequence:

(l,0,0,0,2)[produce>(0,l,0,0,2)[send>l,0,3,0,2)[accept>(l,0,l,l,l)[consume>(l,0,l,0,2)

2.2.2 A lgebraic H igh Level N ets

High level Petri nets extend the basic Place/Transition net formalism by distin­

guishing tokens. More specifically the values of tokens in high level Petri nets are

typed. Algebraic high level nets [47], a variant of high level Petri nets, use algebra to

define token types. This section is intended to introduce basic concepts of signature,

algebraic specification, algebra and Algebraic high level nets.

Given a set P, the free commutative monoid (jP®,A,©) is generated by P such

that A is the neutral elements and the binary operation © satisfies associativity and

commutativity. Elements u> of the free commutative monoid P® over some set P can

be represented as ui = Ep^p(cp • p) with coefficients cp € N. They can be considered

as multi-sets. In the following, we let A be the empty multi-set, and define binary

operation © as uq © uj2 = Ep€p((cp + dp) • p). The inverse operation © of © is defined

as uj\ © u>2 = Epep((cp — dp) ■ p) if u>2 < (*>i, he. for any p G P, dp < cp.

A signature S IG = (S , OP) consists of a set S of sorts, and a set OP of constant

and operation symbols. Each operation symbol O is indexed by a pair (a , s), a e S*

and s E S denoted by Oa>s- (J is called the argument sorts and s the range sort of

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

operator o. Let X s be a finite set of variables of sort s. X — Uses ^ s

set of variables w.r.t. the signature SIG. The set Top,s(X) of terms of sort s is

inductively defined by:

• c TopA x);

• 0(t i , ...,tn) E Top,s(X) for all operation symbol 0 E O P with O : si...sn —» s

and all terms ti E TOPiSl(X), ..., tn E T0 p,Sn(X).

For convenience, we introduce symbol Top(X) = Uses Top A X) to denote the set

of all terms, and symbol TOPs = TqpAA) t° denote the set of terms not containing

variables (also called ground terms).

A SIG-algebra A = (S a , OPA), providing an interpretation for a signature S IG =

(S, OP), consists of two families Sa = (As)ses and OPa = (0a)o€OP where A s are

sets for all s E S, called domain of A, and Oa '■ A a\ x ... x A sn —> A a is a function for

each operation symbol O : s i x ... x sn —» s. Given an assignment ass : X —> A with

ass(x) E A s where x E X s and s E S. The extended assignment, or simply extension

ass : T o p (X)® —» A® of the assignment ass is recursively defined by:

• aSs(x) = ass(x) for all variables x E X \

• ass(o(tl , ..., tn) = OA(aSs(tl), ...,ass(tn)) for all 0 (t l , ..., tn) E ToP{X).

• for any cu = Y<k{ck • tk) where k,Ck E N, and tk E T o p (X), ass{u) = S^kAk •

ass(tk)).

An algebraic specification S P E C = (SIG, E) consists of a signature S I G and a set

of equations E w.r.t. the signature SIG. In the context of this paper, only positive

conditional equations are considered. An SPEC-algebra is an SIG-algebra satisfying

all equations in E.

D efinition 3 (Algebraic High-Level N et [47]) An algebraic high-level n e t

(AHL-net) N is a 9-tuple (SPEC, X , P, T, type, cond, pre, post, A) where

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• S P E C — (S I G ; E) is an algebraic specification with the signature S IG =

(S, OP) and a set of eguations E;

• X is a set of variables w.r.t. the specification SP E C ;

• P is a finite set of elements called Places;

• T is a finite set of elements called Transitions disjoint from P (P fl T = 0);

• type : P —► S, assigning each place p G P a sort type(p) G S;

• cond : T —► CPf in(E Q N S {S IG \X)) , assigning each transition a finite set of

equations w.r.t. the signature S IG and the set of variables X , where CP denotes

the power set;

• pre,post : T —> @ p£p(ToP,type(p)(X) x {p})®;

• A is a SPEC-algebra.

Similar to Place/Transition nets, symbols *p, p \ *t, t* denote the set of pre- and

post- transitions/places for a given place/transition, respectively. A marking of an

AHL-net is denoted by M e {(o,p)|a G A type(p),p G P}®. Let a:Var(t) —» A be a

variable assignment where Var[t) is the set of variables occurred in cond(t), pre(t)

and post{t) for any transition t E T. Transition t is enabled with the binding a under

the marking M if the transition condition cond(t) is validated in A under function a

and a(pre(t)) < M. Then the marking M ' = M Q a(pre(t)) @a(post(t)) is computed

by firing the transition t with the binding a under the marking M.

Figure 4 [151] shows an AHLN for a consumer and producer system. The algebraic

specification declares 4 types (nat, bool, data, and queue), 2 constants (err of data

type, nil of queue type), and 5 operations. Each place has an associated type, and

each transition has a set of equations. By default, the equations in a transition like

co always hold. The “weight” associated with an arc is a multi-set of terms defined

in the related algebra.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

s o r t s : n a t , bool , d a t a , queue
opns: e r r : d a t a , nil: queue

inq: d a t a q u e u e queue
deq: qu eue queue
f i r s t : qu eue d a t a
e m p ty : queu e bool
le ngt h : que ue n a t

eqris: de q (n i l) =n i l
d e q (inq (x ,n i l))= n i l
deq (inq (x , in q(y , q)))= i nq (x ,d eq (y ,q))
f i r s t (n i l) = e r r
f i r s t (i n q (x , n i l)) = x
f i r s t (n q (x , i n q (y , q))) = f i r s t (i n q (y , q))
e m p t y (n i l) = t r u e
e m p t y (i n q (x , q)) = f a l s e
1engthCni 1)=0
l e n g t h (i n q (x , q)) = l e n g t h (q) + 1

data(length(q)<=n- 1)=true)

deq(q)
cose re

date data

Figure 4: Algebraic High-Level Net of Consumer-Producer System

2.3 C ateg o ry T h eo ry

All definitions in this section are from [26],

D efin ition 4 (C atego ry) A category ip consists of a class \<p\ (whose elements are

called objects of the category), and a class of arrows between any two objects (called

morphism), which satisfies following conditions:

1. Morphism Composition: (A —> B) o (B —> C) = {A —> C);

2. Identity morphism 1 a € <p(A, A) exists for any object A;

3. Associativity axiom: given morphisms f : A - + B , g : B - + C , h : C ^ D , then

h o (g o f) = (hog) o f .

4- Identity axiom: given morphisms f : A —> B, g : B —> C, then 1b 0 f = f ,

go 1B = g.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Exam ple 1 The category S P E C consists of algebraic specifications (S, OP, E)

and of specification morphisms f — (fs '■ S I —> S2, fo p : 0P 1 —> 0 P 2) : S P E C 1 —>■

SP E C 2 satisfying f{o : si...sn -> s) = fo p {0) : fs (s i) ...fs (sn) -»• fs (s) and such

that f t (E l) C E2 where f t is the unique extension of f to terms and equations

[45]. Specification morphism f is injective i f functions f s and fo p are injective.

Specification morphism f is strict if, given an arbitrary positive conditional equation

e, we have ft(e) E E2, then e E E l .

D efinition 5 (Functor) A functor F from a category SP E C 1 to a category

S P E C 2 is a mapping, which maps a object, a morphism of the category SP E C 1

to a object, a morphism of the category S P E C 2 respectively and satisfies following

conditions:

1. F(A1 —»■ A2) is a morphism from F(A1) to F (A 2) of the category S P E C 2 ;

2. For every pair of morphisms f : A —> A' and g : A! —» A ": F(g o /) =

3. For every object A of the category SP E C 1 : ^ (1^) = If {A)',

There is a special kind of functor, called forgetful functor, which leaves the objects

and the arrows as they are, but forget the extra structure or algebraic properties.

Let / : SP E C 1 —> S P E C 2 be a specification morphism of category S P E C where

S P E C i = (Si,O Pi,E i) for i = 1,2. The corresponding forgetful functor VfspEC '■

C A T (SP E C 2) C A T (S P E C l) is defined as V } s p e c (A 2) = A1 where A1 is an

object of the category of all SPEC l-algebras denoted by C A T(SPEC l) such that:

A l s = A2fs(s) for all s E S\

Oai = fo p (0)A2 for all O E OP\

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

for all SIG2-homomorphism h! : A2 —> B2 : VfspEc(h') = h : A1 —> B1 with

hs = fr/s(s) for all s e S I

With the forgetful functor, we can define the category of algebraic high-level nets.

Let A4 be SPECi-algebras for i= l,2 . A generalized homomorphism F : A \ —> A 2

consists of a pair / = (f s p e c , /a) where J s p e c is a morphism of category S P E C

and J a - A i - * VfspEc(A 2) is a SPEC 1-homomorphism. Composition of generalized

homomorphisms / = U s p e c J a) '■ A, —>■ A 2 and g - (gspEC,9A) : A 2 ->• A 3 is given

by: go f — (gspEC 0 f s p e c , VfspEc{9 A) 0 /a) : Ai —► A3.

The category A H LN ET of algebraic high-level nets consists of all AHL-nets N

as objects and quadruples / = (J s p e c , fp , f r , / a) as morphisms where

• f s P E C • (S I, OP 1, E l) —> (S 2, O P 2, E2) is a specification morphism of category

SPEC ;

• f p : T 1 —> T2 and f p : P I —* P2 are functions;

• (f s p e c , / a) : A 1 —> A2 is a generalized homomorphism and : A l —»

VfspEc(A2) is an isomorphism in C A T(SPECl).

such that the following diagram commutes componentwise.

p re l
lJ>f i n (E Q N S (S I G l))

' / i n (/ s / g)

0>/< n (E Q i V 5 (5 / G 2))

condl
• t i :

cond2

p o s tl
. (T o p i (X I) x P I) ab

f r (flIO x /p)ab

pre 2
-T 2I

post2
: (T o p 2 (X 2) x P 2) a

D efin ition 6 (P ro d u c ts) Aet C A T be a category and A ,B two objects of C A T .

A product of A and B is, by definition, a triple (P,Pa ,Pb) where P is an object of

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CAT, and pa ■ P — ► A and pB ■ P — »• B are morphisms, and for any other similar

triple (Q , Qa '■ Q — > A ,qB : Q — > B) there exists a unique morphism r : Q — > P

such that qA= PA0 r and qB = pB o r.

P BP A

D efin ition 7 (C o P ro d u c ts) Let C A T be a category and A ,B two objects of CAT.

A product of A and B is, by definition, a triple (P,Pa ,Pb) where P is an object of

CAT, and pa ■ A — > P and pB : B — > P are morphisms, and for any other similar

triple (Q,qA ■ A — > Q,qB : B — ► Q) there exists a unique morphism r : P — > Q

such that qA — ro p A and qB = r o pB.

P a P b

In category theory, a pullback is the limit of a diagram consisting of two morphisms

with a common codomain. The duo notation of pullback is that of pushout, just like

the relationship between product and coproduct. The form definition of pullback and

pushout are given in the following.

D efin ition 8 (P u llback) Consider two morphisms f : A — > C and g : B — ► C

in a category CAT. A pullback of (f , g) is a triple (P, f , gf) such that P is an

object of C A T and f : P — > B , g' : P — ► A are morphisms of C A T satisfying

f o g' — g o f ; and for every other similar triple (Q, f " , g"), there exists a unique

morphism q : Q — > P such that f " = f o q and g" = g' o q.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

D efin ition 9 (P u sh o u t) Consider two morphisms f : C — > A and g : C — > B

in a category CAT. A pushout of (f , g) is a triple (P, f , g') such that P is an

object of C A T and f : B — > P, g' : A — > P are morphisms of C A T satisfying

g' o f = f o g; and for every other similar triple (Q, f " , g"), there exists a unique

morphism q : P — ► Q such that f " = qo f and g" = qo g '.

2.4 Algebraic High-Level N et Transform ation System s

Graphs are a very useful means to describe complex structures and systems, and

to model concepts and ideas in a direct and intuitive way. These structures are

often augmented by formalisms that add to the static description a further dimension

modeling the evolution of systems via any kind of transformation of such graphical

structures. By applying a transformation rule to replace a subgraph, the original

graph is evolved into a new graph. Therefore, graph transformation can be exploited

to specify the graph evolution formally.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This section is intended as an introduction to Algebraic High-Level Net Transfor­

mation Systems, a specific application of graph transformation theory to Algebraic

High-Level Nets. Algebraic High-Level Net Transformation Systems were first pro­

posed by Padberg et al. in [128]. Therefore, we adopt their concepts, symbols, and

definitions in the rest of this section.

An HLR-category (CAT, M) consists of a category CAT together with a distin­

guished class M of morphisms, which is a subset of the class of morphisms in category

CAT . The objects in CAT are called high-level structures (HL-structures for short).

(AHLNET,MAffXiv) 1S a HLR-category where

M a h l n = { / = (fsPEC, fp , f r , f A) \ f is a morphism of A H LNET, J s p e c is strict

injective and f p , f r injective }

M a h l n denotes the class of morphisms used in the definition of the productions. By

chosing injective morphisms, the relation of interface and left (right) side is restricted

to a somehow unique way.

Definition 10 (P roduction and Derivation)

• A produ ction p = (L <— K —> R) in an HLR-category (C A T ,M) consists of

a pair of objects (L,R), called left- and right-hand side, respectively, an object

K , called a gluing object or interface, and two morphisms K —» L and K —> R

belonging to the class M,

• Given a production p as above and an object C together with a morphism K —>

C . A d irect d eriva tio n from an object G to an object H via p (written

p:G =>- H) is given by two pushout diagrams (1) and (2) in the category C A T :

L-6------------------- K------------------ - R

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The morphism L —» G, respectively R —> H are called occurrence of L in G,

respectively, R in H . C is called the pushout complement.

• A derivation sequence G =>* H from G to H is either G = H (isomorphism),

or a sequence of n > 1 direct derivations: G = Go G\ =>• ... => Gn = H via

(pi,...,pn)-

The gluing condition is introduced to construct pushout complement in order to

achieve a constructive view. More specifically, the gluing condition states how to

delete some part while still obtaining a well-defined HL-structure as pushout com­

plement. Due to the space limit, we cannot give the gluing condition for the cate­

gory AH LNET. More detailed information of gluing condition and construction of

pushout complement can be found in [128]. We just want to point out that the gluing

condition for A H LN ET is equivalent to a pushout of AHLNET. More specifically,

if two morphisms f : K —> L and g:L —> G of category A H LN ET with / € M Ah l n

meet the gluing condition, then the pushout complement C exists. On the other hand,

if the diagram (1) in the definition of production is a pushout such that morphism

K —> L € M a h l n , then morphism K L and L —> G satisfy the gluing condition.

Definition 11 (AH L-net Transform ation System) An AHL-net transforma­

tion system A T S = (S ,F) based on an HLR-category (A H L N E T , M a h l n) is given

by an object S of A H L N E T , called the initial HL-structure, a set of productions P .

The language of an AHL-net transformation system A T S , denoted by L (A T S), is a

set of AHL-nets derived from S via a sequence of productions, i.e. L (A T S) = {N

| A is an AHL-net such that there is a sequence of productions pi,...,pm £ P with

S => N via p i,...,pm}.

Our definition of AHL-net transformation system is a little different from the de­

finition given in [128] since we do not care about terminal objects derived from the

initial HL-structure. W hat we are interested is a subset of derived HL-structures

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

via some productions. In order to describe derivations over a set of productions, the

following concepts are introduced.

D efinition 12 (Independence) Given two productions p = (L K —► R) and pi

= (I! <— K ' —> R') in an HLR-system, a derivation sequence G => H => X via p,p'

given by the following pair of double-pushouts is called sequentially independent, if

there are morphisms L' —> C and R —> C' such that L' —> C —> H = L' —» H and

R ^ C' —> H = R H.

■H

Given productions p = (L <— K —»• R) and p' = (L’ <— K ' —> R') in an AHL-net

transformation system the production p+ p' = {L + L' <— K + K ' —> R + R ') is called a

parallel production of p and //, provided there are binary coproducts L + L ', K + K ',

and R + R ' that are guaranteed by the characteristics of category A H LN ET . A direct

derivation G => X via a parallel production p + p1 is called a parallel derivation. The

following theorem defines the relationship between parallel derivations and sequential

independent productions.

D efinition 13 (Parallelism Theorem) In any HLR-system based on a H LR1-

category (C A T, M) the following propositions hold:

• Syn th esis. Given a sequentially independent derivation sequence G => H =>

X via (p,p') there is a synthesis construction leading to a parallel derivation

G =+ X via p + p '.

• A na lysis. Given a parallel derivation G => X via p + p' there is an analysis

construction leading to two sequentially independent derivation sequences G =>

H =+ X via (p+l) and G =+ H ' =>■ X via (pf ,p).

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The sequential independent derivation sequence G => H =$■ X via p and p' actually

indicates that the occurrences of L in G and V in C do not interfere with each

other, in the sense that nothing is deleted that other production needs. Therefore,

the sequentially independent derivations can be sequentialized in any order without

affecting the final result [44]. Therefore, given a sequential independence derivation

sequence G = G0 => Gi G2 =*►...=» Gn = H via pl,...,pn, we may write G H

over a production set P — {p l,...,p n } , or more specifically G =>• H is a parallel

derivation over P according to parallelism theorem if the corresponding coproducts

exist.

2.5 Sum m ary

As we have discussed in the previous chapter, the proposed framework integrates

multiple techniques seamlessly: algebraic specifications, Petri nets, category theory,

and transformation systems. This chapter gives a brief introduction for each of them

as the background knowledge for the following chapters.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3

COMPONENT-BASED SYSTEM MODELING

FRAMEWORK

3.1 Introduction

Currently the most popular support in industry for component-based frameworks

appears to be COM+ and CORBA. Unfortunately, components in these frameworks

lack a precise semantics probably due to their focus on system implementation, which

makes it difficult to reason about this kind of systems. Many formal methods have

been proposed to model and analyze component based systems, including Piccola

Calculus [116], Abstract Behavior Types [6], and Eiffel Language [60]. In this chapter,

we use Petri nets as the underlying formal method, and present a component modeling

framework.

One particular concern in component-based systems is the component modeling.

The generic component modeling, presented in this paper, has been mainly motivated

by the ideas in [148] for “tiered component framework” , and by the concepts of “nets

and rules as tokens” for Petri nets [79,152,153]. In [148], component frameworks are

organized into multiple layers, and two layers often suffice in most cases. Blackbox

frameworks accept “plug-in” components without modifications to the framework.

The architecture can be extended further: a component framework itself can be slot­

ted into a higher tier framework tha t regulates interactions. Such an idea is adopted

in our work to separate component functionalities from message pool management

and required properties such as responsiveness, scaleability, security, and reliability.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

More specifically, the internal behavior is captured by a function net whereas message

pool management and required properties are modeled by component nets in which

function nets serve as tokens.

Although components have been the predominant focus of research, they address

only one aspect of component-based software development. Another important as­

pect is interactions among components, i.e. connectors. Connectors are sometimes

deliberately modeled as components (connection components in Rapide [101]). In my

work, in order to make the distinction clearer, we use a different technique - trans­

formation rules [128] to model connectors. Although the main purpose of adopting

transformation rules is to model connectors, they can also be explored to refine com­

ponent nets in multiple ways to add additional functionalities such as creation and

destruction of components.

This chapter introduce the proposed framework for component-based system mod­

eling. Components’ internal behaviors captured by function nets, are wrapped by

component nets, which not only deal with message pool management with other

components, but also model non-functional component requirements. A set of com­

ponent nets are composed into a (sub)system model by applying transformation rules.

Such an approach is flexible, and makes the reuse and maintenance of components

and connectors easier since connectors and components are independent from each

other in the framework.

This chapter is organized as the follows: Section 2 outlines related works. Section

3 explains the framework informally through a dining philosopher example. The

component model is described in section 4, while transformation rules are defined

and classified in section 5. The integration approach and analysis techniques are

illustrated in section 6 and 7, respectively. Finally a summary is given.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.2 R elated Work

Different modeling languages have been proposed to model component-based sys­

tems during last century, such as Unified Modeling Languages (UML), Cadena [66],

Embedded Systems Modeling Language (ESML) [86], and Ptolemy II [28] etc..

Among them, Petri nets [112] draw attention since they are a simple, graphic based

but formal modeling language, which is suitable to model concurrent and distributed

systems.

The ability to compose Petri nets is fundamental to component-based system mod­

eling. In the research literature, there are other ways to compose Petri nets to form

a system model. One of them is to construct algebras of Petri nets over constants

and compositional operators as in [115,130]. In their work, labeled Petri nets are

extended with interfaces (public places and transitions) through which components

communicate with the external environment. Another way to compose Petri nets is

through place fusion [18,91], transition fusion [17], or both [34]. However, place fusion

and transition fusion are very tightly coupled, which cannot decide the enabling of a

transition locally, and even worse violate the modular principle of incremental system

development. The last way to compose Petri nets is based on category theory [99] [11].

Unlike our work, there is no explicit separation among component models and their

interaction models, which violates reusability and maintainability.

Among the previous works, the works of Padberg [125-127] based on category

theory and Sibertin-Blanc [143,144] based on arc fusion are the closest to ours. Pad­

berg et al. specified a component as a model specification with an import interface

IM P , an export interface E X P , and a body BO D connected by an embedding mor­

phism imp : IM P —► BO D and an substitution morphism exp : E X P —> BOD.

IM P , E X P , and BO D are objects of Place/Transition net category. Three mod­

ule operations Disjoint Union, Union, and Composition are defined to provide flat

and hierarchical composition semantics for Place/Transition nets. Unlike our work,

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

they focused on low level Petri nets with markings as basic objects, and composi­

tion of components is always well-defined by importing and exporting functionalities,

while we focus on concurrent distributed systems interacting with each other through

message exchange.

Blanc [143,144] proposed another Petri net based formalism for modeling, analysis

and simulation of systems: Cooperative net and communication net, both of which

can model complicated distributed systems as a set of components that have their

own internal structures and behaviors, and also communicate with each other through

message passing. Each component is a cooperative/communication net. Component

composition is achieved through arc fusion, a looser coupling compared with place

and transition fusion. Although the enabling of a transition can be judged locally, the

firing of a transition is defined globally. Even worse, there is a structural dependence

among components due to the potential structural reference in transition actions.

More specifically, one component has to refer to other components’ internal places

for the purpose of communication, which is in general not available during modeling

process. Therefore, structural dependence makes the reuse of components and support

for incremental design harder.

Another extension of Petri nets introduces object-oriented concepts, which pro­

vides an easy understanding of modeled systems and the reusability of Petri nets.

This approach is not in conflict with our work since we focus on the modeling of

communication mechanisms and component interactions. More specifically, object-

oriented approach can be adopted to construct function nets modeling component

behavior.

3.3 Informal Introduction to the Framework

In order to illustrate concepts of the framework, we present a small system inspired

by the case study “the Dining Philosophers” in [144], In our version, philosophers,

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the host, and the servant communicate with each other by sending and receiving

messages.

Figure 5(a) shows our version of philosophers. A philosopher can join the table

to think and eat. In order to join the table, he sends a seat request to the host.

If a seat is available, the philosopher can sit in the allocated seat. When he feels

hungry, he can obtain his left and right forks by asking the servant. Only with two

forks in hands, he can eat. After a philosopher finishes eating, he can release forks

by notifying the servant so tha t the servant can take back the forks. A philosopher

can leave the table for reading by notifying the host.

Figure 5(b) and 5(c) show Petri nets for the host and the servant respectively. We

assume there are n seats around the table, and n forks on the table. The seats are

managed by the host. A philosopher can only take the seat allocated by the host.

The host always let each philosopher sitting in the same seat. Forks on the table

are managed by the servant. The servant can give a philosopher his left and right

forks if the servant receives his request and both forks are available, i.e. no other

philosophers are using them.

There are two special kinds of places in the Petri nets of Fig. 5: input places and

output places. An input place represents an “unidirectional channel” through which

the external environment can send messages to the model, while an output place

represents a “unidirectional channel” through which the model can affect its external

environment by sending message to it. In Fig. 5, an input place is denoted by a

circle with a thick line, while an output place is denoted by a circle with a dashed-

thick line. The set of input and output places are {AssignedSeat, AssignedFork} and

{RequestSeat, PhilLeft, RequestFork, ForkReleased} respectively for component mod­

els of philosophers. A philosopher sends a seat request to its external environment,

and the host is notified from a message at place RequestSeat. Whenever a message

is put in place SeatRequest, the host knows there is a new seat request from some

philosopher.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

» RequestSeat\ m

AssignedSeat ForkReleased

SitDown
Reading

Thinking

AssignedFork

* - *
PhilLeft

Eating

P2

CheckFork

ReleaseForkLeaveTable

TakeFork

JoinTable

SeatR equ est A v a ilS ea t

R ev o k eS eaA ssign S eat

* - *
SeatA vail O ccu p ied S eat L eftP hil

(b) Host

(a) Philosopher

F orkR eq uest A va ilF ork

i
---------- =»-

A ssignF ork

V I

R evok eF or

O O

(c) Servant

Figure 5: Component Models in Hurried Philosopher Example

Although each component in the dining philosopher problem is modeled by a Petri

net, and the protocol between a component and its external environment is implicitly

defined by specifying the sets of input and output places, the specification of com­

munications among components is still missing. In other words, an approach should

be proposed to integrate these individual models to a complete model without major

modification. A straightforward way is through place fusion or transition fusion. In

this case, an output place in one model can be merged with an input place in another

model. For example, we can merge places AssignedFork in Fig. 5(a) with the place

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ForkAvail in Fig. 5(c). However, this approach can cause several problems. First, it

requires internal information of component models, which is often not needed during

communication between different components. Furthermore, it breaks the principle of

modularity. Second, place fusion may change the semantics of individual component

model. For example, most of reactive systems respond to the next external event only

when they have handled the current event just like the run-to-completion assumption

in UML state machines. However, place fusion may destroy the above working order:

to preserve the behavior, Petri nets have to be changed [52], which makes the syn­

thesis more complicated. Finally it cannot distinguish channels or connectors from

components based on syntax, which makes systems hard to understand.

In the framework, Petri nets in Fig. 5 are called function nets. Another kind of

Petri nets called component nets is proposed to “wrap” function nets through the idea

“nets as tokens” [152,153]. More specifically, function nets model component internal

behavior in terms of event handling, while component nets model the management

of message pools for a set of components sharing the same behavior. The object

G in Fig. 6 contains component nets for philosophers and servants. Generally, a

component net has the following places: a set of places called input interface receiving

messages from environment, a set of places called output interface sending messages

to environment, and a place Pobject containing function nets as tokens. There is a set

of input transitions, in our case only one transition tin passing messages to function

nets. Similarly, there is a set of output transitions, in our case only one transition

tout passing messages from function nets to output interface. A transition tresponse is

enabled if a transition in the function net is enabled and there are no tokens in the

output places. As a result of firing transition tresponse, an enabled transition in the

function net is fired. A component instance of a component model, described by a

sub-marking of a component net, is denoted by tokens in interface places and Pobject

sharing the same identification number. For example in Fig. 6, the tokens with the

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

same color red in philosopher component belongs to the same component instance,

i.e. there are three philosophers and one servant.

In order to construct systems based on component nets, transformation rules are

adopted to specify message exchange between interfaces of different components. Here

we assume that tokens contains sender and receiver information, and message para­

meters. Fig. 6 shows a rule and its application to component nets of philosophers and
I V • •servants. A production, i.e. rule p:L <— K —> R consists of three objects L ,K ,R and

two morphisms I and r. Given a morphism L —> G denoted by a dashed arrow in Fig.

6, we can apply the production to the object G (disjoint union of philosopher and

servant in Fig 6). If gluing conditions are satisfied, the pushout complement X can

be constructed such that the diagram (1) is a pushout. Due to the characteristics of

category, object H exists such that the diagram (2) is also a pushout. Therefore, we

say H is derived from G via the production p, denoted by a transformation G => H .

The component nets for philosophers and servants are connected through the channel

denoted by R. In more general case, channel may be more complicated, such as an

AHL-net with memory and buffer.

Figure 7 shows the resulted system net by synthesizing different component nets.

In Fig. 7, component nets are denoted by enclosed dotted lines. We assume there

is a reading philosopher Watson. The type of places Pi and Pa is a queue satisfying

FIFO (first in, first out) in this case. Table 2 shows the firing sequence of Watson

joining the table. In the table, SeatN O is the seat assigned by the host to Watson.

3.4 C om ponent M odels

In the proposed framework, components are modeled by component nets, a variant

of Algebraic High-Level Net. Component nets explore the idea of “Nets as Tokens”

proposed by Dr. Valk [152] for the introduction of object-oriented concepts into the

Petri net formalism. The higher level capture the message passing between different

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o

- o
L

(1)

1 + * o b ie i 1r e s p o n s e •£_

1 i------------------- w A *
■ 1 i—

i P '

ct P h i

^ J 1--------
M H I t o u

1 P o

l O S O p f y

" H i
D

t
\ \ —

i ‘■ r e s p o n s e

p p ‘ (

*) . —

e c t S

n 1 .

ervant;

P h ilo so p h y

X = G

-I

P o

(id' ,remove(y'))

nso iK ler(first(y ’)) =j id ’
r̂o/»ol i ror I firctlirl 1 1/-re c e iv e r(f irs t(y ’)) id

(id,y) \ \ (id ,a d d (f i r s t (y ') ,y))

o Pi \
R I

P o b j e P h ilo so p h e r

4 t o u t

P i

P o

I jy> T \ (id ,a d d (f i r s t (y '] ,y j)

, T,~Lp-l ,
(i d , y) T l (id ,rem°ye[y_)l

•) < ’ f t Z t I Pi (V)

3 = ® =
IT J

P o b j e c t

h "

S e rv an t;;

Figure 6: A Transformation Example

components, while the lower level, called function nets model component behavior.

This section explain function nets and component nets in detail.

3.4.1 F unction N ets

Function nets are used to model component functionalities without the concern

of component interactions and non-functional requirements such as responsiveness,

scaleability, security, and reliability etc. More specifically, function nets specify com­

ponent responses to messages from the external environment. We define function net

as follows:

D efin ition 14 (F unction N e t) A fu n c tio n n e t is a 4-tuple B N = (N , P{n, Pout,

allocate) where:

• N is an AHL-net;

• Pin ^ P is a set of input places;

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

P h i l . t ,

P h i l . t j i e q U e s t R F o r k

T a b le . Pi

T a b le .P o

P h i l .
A s s i g n e d S e a t T a b le . t■

F O V k . t F o r k R e q u e s t

F o r k .t i

Figure 7: System Net of Dining Philosopher Example

• Pout Q P such that Vp G P„ut : p* = 0 is a set of output places disjoint from

input places (Pin n Pout = ®);

• allocate is a function assigning each input place a set of tokens it may receive

from environment, i.e. Vp G P{n : allocate(p) C 2Atw<p) and Vp,p' G Pin :

allocate(p) n allocate(p') = 0.

A function net with a non-empty marking M of AHL-net N is stable if:

• No messages in the input places: Vp G Pin, flterm G A typê : (te rm ,p) < M ;

• No message in the output places: Vp G Pout, flterm G A type^ : (te rm ,p) < M ;

• No transition is enabled under the marking M : Vf G T : pre(t) ^ M \/cond(t) =

fa lse .

As the above definition indicates, function nets are a special kind of algebraic high-

level nets [128] by classifying places into three categories: input places, output places

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 2: Transition Firing Sequence of Watson Joining Table

M a r k in g o f t h e S y n th e s is N e t F i r e d T r a n s i t io n

P h i l (W a ts o n) T a b le A g e n t

C o m m u n . N e t F u n c . N e t

Pi Po Function Net Pi Po Function Ne t

1 0 0 (W atson , R eading) 0 0 ^5 = 1 (j,A vailS eat) P h i l . t r e spo n se Jo inT ab le

2 0 0 (W atson , P 5) ©
(S eatR eq , R equestS eat)

0 0 £ ”=1 (j.A vailS eat) P h i l . t s e a t R e q u e s t N /A

3 0 S eatR eq (W atson , P 5) 0 0 S ”=1 (j,A vailS eat) ^ M s e a t Reques t N /A

4 0 0 (W atson , P5) S eatR eq 0 A vailSeat) T a b l e . t i n N /A

5 0 0 (W atson , P5) 0 0 £™= l (j,A vailS eat) ©
(S eatR eq , S eatR equest)

F a b le .t r esponse A ssignS eat

6 0 0 (W atson , P5) 0 0 £ L (j , A vailSeat) ©
(S eatN O , A vailSeat) ©
(S eatN O ,O ccup iedS eat) ©
({ SeatA vail, S eatN O),
S eatA vail)

T a b l e . t s e a tAva i l N /A

7 0 0 (W atson , P5) 0 (
S eatA vai
S eatN O
)

£ ? = 1 (j, A vailSeat) ©
(S ea tN O , A vailSeat) ©
(S eatN O , O ccup iedS eat)

S e a tA v a i l N /A

8 {
S eatA vai
S eatN O
)

0 (W atson , P 5) 0 0 £ j = 1 (j, A vailSeat) ©
(S eatN O , A vailSeat) ©
(S eatN O , O ccup iedS eat)

P h i l . t i n N /A

9 0 0 (W atson , P 5) © ((
S eat A vail,SeatN O),
SeatA vail)

0 0 ^ j = i (j, A vailSeat) ©
(S eatN O , A vailSeat) ©
(S eatN O , O ccup iedS eat)

P h i l . t respori6e SitD ow n

10 0 0 ((W atson , S eatN O),
T h ink ing)

0 0 E j1—l (j, A vailSeat) ©
(S eatN O , A vailSeat) ©
(S eatN O , O ccup iedS eat)

and internal places. Input places contain messages received from the external envi­

ronment. Output places contain messages to the external environment as responses,

while internal places indicate component status. Input, output, and internal places

are supposed to be disjoint, otherwise the meaning of a message in such places is

ambiguous. Upon reception of a message in an input place, a function net can be

executed until reaching a stable status, in which no transition is enabled and the

component is waiting for the next to-be-handled message. As a result of handling a

received message, in most cases, at least one message in an output place is generated

as a response to the external environment.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In most cases, sets of input and output places are not empty. However, if both

sets are empty, we say such a component is a closed system that does not interact

with other components or systems. If only the set of input places is empty, we say

the component is a message generator, which affects its environment. If only the

set of output places is empty, the component is called recorder, which only records

environment’s influence on itself without feedback.

Given a component, we can either model its behavior as a function net from scratch,

or make little modifications to the available Petri net behavioral model to meet the

definition of function nets. However, it is in general impossible to model or obtain

the behavioral model of commercial-off-the-shelf (COTS) components. W hat we have

known about these blackbox components is the well-defined relationship among in­

terfaces (input and output places). Fortunately, we can either construct a behavioral

model from such relationships or use algebraic specifications to represent such in­

terface relationships of blackbox components . In either way, component nets work

correctly since a function net is actually treated as an algebraic specification due to

the fact that Petri nets are monoids [108].

3.4.2 C om ponent N ets

A component not only has its own behavior, which is modeled by function nets, but

also needs to communicate with other components through message exchange, and

may have some non-functional requirements including responsiveness, scaleability,

security, and reliability. Therefore, we adopt the idea “nets as tokens” to synthesize

function nets with communication mechanism. The paradigm “nets as tokens” was

introduced by Valk in order to allow nets as tokens, called object nets, within a net,

called system net [152,153]. The object nets may not only change its marking, but

also modify its net structure in the context of system nets. Such characteristics,

together with the communication complexity between objects nets and system nets,

confine the research of object nets on low level Petri nets.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Fortunately, net structures of function nets in our work are supposed to be un­

changeable. Therefore, an algebraic high level net may be represented by an algebra,

which can be adopted by another algebraic high level net as part of its specification,

which is viable since Petri nets are monoids [108]. The following shows the signature

S IG Bn constructed for a given function net B N = (N , Pvn, Paat, allocate) where N

= (SP E C , X , P, T , type, cond, pre, post, A) and X a finite set of variables, i.e.

X = {x l, ...,xn}.

S IG bn —

sorts: Transitions, Places, InPlace, OutPlace, Bool, System, InEvent, OutEvent,

Domainxi, ..., DomainXfl

opns: truthValue, falseValue: —► Bool

enabled: System x Transition x Domainxl x . . . x Domainxn —> Bool

enabled': System —► Bool

fire: System x Transition x Domainxl x . . . x Domain.,,n —> System

hasoutput: System x OutPlace x Events —» Bool

hasoutput': System —*■ Bool

hasinput: System x InPlace—> Bool

hasinput': System —► Bool

output: System x OutputPlace x OutEvent —► System

input: System x InEvent —> System

Operation enabled specifies if a transition is enabled under the current marking

and the assignment to variables. Operation f ir e fires a given transition with a given

variable assignment. Operation hasoutput checks if a given output place contains a

given message. Operation hasinput checks if a given input place contains a message.

Operations enabled', hasoutput' and hasinput' are the more abstract version of corre­

sponding operations. Operation output removes a given message from a given output

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

place, while operation input adds a given message to an input place. Based on the

signature S I G b n , a S I G b n -algebra B can be constructed as shown in Appendix A.

In order to communicate with the environment, each component manages an input

and output message pool. Although we choose the data structure queue in this inves­

tigation, the message pool actually can be represented by any other data structures

such as list or stack. However, no m atter what kind of abstract data structure is

chosen, following signature S IG com should be “included” in specifications of message

pools.

SIG com

sorts: Queue

import: MESSAGE

opns: empty: —> Queue

add: Queue x Message —► Queue

remove: Queue —► System

first: Queue —>■ Message

where

M E S S A G E =

sorts: Message

import: NAME, ID

opns: kind: Message —► Name

sender: Message —> ID

receiver: Message —> ID

Operation add adds a message to the queue, while operation remove removes first

available message from the queue. Operation f i r s t returns the first available message

in the queue. Operations kind, sender, receiver return message type, message sender

and receiver respectively. The signature N A M E and ID specify the message type

and object unique identification number respectively.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Based on the above algebraic specifications, we can define component nets as the

following:

D efin ition 15 (C o m p o n en t N e t) Given a function net B N , a com ponent n e t

based on B N is an AHL-net N0 = (SP E C 0, X , P0, T0, type0, condo, pre(), post0,

A q) shown as L in Fig. 9 where

• SP E C q = (S IG b n + S IG corn, $) is an algebraic specification;

• Po = {Pobjectj Pi; Po};

• ^0 ~ { ôut ; tresp0nse, tin };

• type0 (Pobject) — ID x BSystem; typeo(Pi) = ID x Queuein, type0 (Po) = ID x

Queueoub,

• Function condo is as follows:

condoitin) = condoitffut) = 0;

condo {tresponse) — (dt G Brpransni(yn, Hvx/i G Asi such that x i G X si, for i l,...,n .

enabledB(x, t, vx\ , ..., vxn) = = true);

• The function preo is as follows:

preo(tin) = ({id,y),Pi) © ((id ,x),P object),

P^eo(tresponse) = ((id, x) ,Pobject),

preo(tout) = ((id ,y),P 0) © ((id, x),Pobject);

• The function posto is as follows:

post0 (tin) = ((id,remove(y)),Pf) © ((id, inputB(x, fir s t(y))) ,P object);

pOSto(tresponse) = ((id, f i r e B(x ,t,V xl, ■••,VXn)'), Pobject);

post0 (tOut) = ((id, add(e, y)),P0) © ((id, outputB(x,p, e)),Pobject);

• A q is a SPECo-algebra.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

tr e sp o n s e

(id, f i r e B (x, t, v x t , . . . , v x n))(id, x)
to u t

(id, x)
objec t

(id, o u t p u t b (x , Pi, e))

(id, x\(id, r e m o v e (y)) id, i n p u t B (x, f i r s t (y)))
(id, add(e, y))(id, y)

enabled'B (x) = = f a l s e
hasoutput 'B (x) = = f al s i
h a s i n p u t B (x) = = f a l s e
y e m p t y _____

i d = id\
enabled'B (x) = = f a l s e

36 £ BoutEvent •
h a s o u t p u t B (x , P i , e) = = t r u e

id = i d i ,
3 t £ BTransition,
3vxi £ BAssignmentx i Such t h a t x i £ i
e nabl edB (x, t, v x i , ■■■,vx n) = = t rue)

t i n

Figure 8: The Semantics of a Component

A component net not only executes its function net as a response to the external

environment, but also manages the input and output message queues according to

system specification. Generally these tasks are not isolated from each other, rather

there is a strong relationship between them affecting component behavior in terms

of:

• When to fetch from the input queue the next message, which is ready to be

processed by the function net?

• When to put a generated message to the output queue in which the message is

available to its environment?

• When to process the current message in input places by executing the function

net?

A component specifies the answers to the above questions for all of its components.

The AHL-net N 0 as constructed in Definition 15 is a special component architecture

that allows its components to execute the function net and manage the queues at

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

appropriate time. Due to the flexibility of potential productions, a component may

provide complex answers to the above questions for contained components. In other

words multiple components of a component may have different semantics if necessary.

For example, in Fig. 8 a component idi {id\ is a constant of sort ID) is distinguished

from other components by having run-to-completion assumption: A component can

handle the next message in the input queue only if the function net is stable, while it

can put a generated message to the output queue when no transition in the function

net is enabled. Therefore, refinement productions are introduced to provide flexibility

to model complex answers to the above questions by refining transitions t in, tout,

r̂esponse and places Pi and .

3.5 T ran sfo rm atio n R ules

Besides modeling components, we need to provide an approach to model interac­

tions in the form of message exchange as well as a methodology to integrate component

models into a system model in a modular and incremental way.

In the framework, transformation rules (or productions) in HLR-category

(A H LN E T, M a h l n) [128] are adopted to model interactions. By exploring trans­

formation rules, the framework has the following advantages as well as flexibility and

powerful expressiveness:

• Transformation rules have formal semantics. Since Petri nets are also a formal

graphic modeling language, our methodology of system modeling has a strong

theory basis.

• By adopting transformation rules, we not only separate component modeling

from channel/connector modeling, but also distinguish dynamic component cre­

ation and destruction from component modeling.

• Transformation rules can also be explored to refine/construct component nets.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• By adopting transformation rules, system can be modeled in a modular and

incremental way.

• It is flexible to model different (sub)systems containing various aspects or sce­

nario by applying different transformation rules to different component nets.

I have defined multiple types of transformation rules for various purposes in the

framework. Table 3 gives a summary of production types. Creation/destruction

message passing productions are distinguished from interaction productions since such

messages are passed from a component to a component net, not from a component

to another component just like interaction productions. Refinement productions are

used to refine component nets, especially the relationship between message pools and

function nets to support complicated behavior such as run-to-completion assumption

in UML state machine diagrams.

We have to point out that currently we do not take message broadcasting into ac­

count. Given a transformation rule (L <— K —> R) and an AHL-net G, the occurrence

of L in G is not unique, and therefore we may get multiple AHL-nets. Not all of them

are valid (sub)systems with the concern of requirements. A consistent condition is

given for each kind of productions to guarantee that the system model we obtain is

valid. In the rest of this section, I give the definition of each kind of transformation

rules.

3.5.1 R efinem ent R ules

D efin ition 16 (R efinem ent P ro d u c tio n) Given a component net N q based on the

function net B N , a refin em en t p rodu ction p: (L <— K —> R) is in the form of

Fig. 9 such that L = N q and morphisms K —»■ L and K —> R are in the class M a h l n -

Additionally, for any transition in R with an incoming arc from place Pobject, there is

an corresponding outgoing arc to place Pabject-

In Fig. 9, a dashed rectangle in R indicates a sub-AHL-net, the structure of which

is up to each production. Therefore, a refinement production actually specifies that

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

T y p e s D e s c r ip t io n

R efinem ent P roduction R efining generic com ponent nets

C reation P roduction A dding dynam ic com ponent creation functionality to com ponent
architectures

D estruction P roduction A dding dynam ic com ponent destruction functionality to com po­
nent architectures

Interaction P roduction C onnecting com ponent architectures through m essage exchange

M essage C reation P assing
Production

P assing creation m essages from a com ponent to a com ponent net

M essage D estruction
Passing P roduction

P assing destruction m essages from a com ponent to a com ponent
net

Table 3: Summary of Production Types

place Pi may be refined with places P f , . . . , P ” , place PQ with places P f , P " \

transitions tin, tresponse, tout with sub-AHL nets. The set of places Pt], . . . , P ” is called

the input interface of CA, similarly P f , . . . , P™ is the output interface. In refinement

productions, firing a transition in R either updates the marking of a concrete function

net, or never need access to tokens in place Pobject■ Such restriction is for the purpose

of property “uplifting” specified in Section 3.7

3.5.2 C re a tio n R ules

During system evolution, component instances1 may be created and destroyed dy­

namically during runtime, which has to be supported by system designs. In order

to support dynamic instantiation of components, the following productions are intro­

duced.

D efin ition 17 (C rea tio n P ro d u c tio n) A crea tion produ ction p: (L <— K —>

R) is in the form of Fig. 10 such that:

• Morphisms K —> L and K —* R are in the class M a h l n ;

• The morphism K —> L is an isomorphism;

T n general com ponents are heavyw eight un its w ith exactly one instance in a system . However
our approach can also be applied to m odel system s m ade up of objects. Therefore, th e term -
com ponent in sta n ce- is a little bit abused.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(id,y)

{id, x)

Pobject

{id, re mo ve {y))

{id, x)

 tresponse

{id, f i r e B { x , t , v x\ ? • • •) x̂n))

7
{id, add(e, y))

id, outputB (x , Pi , e))
{id, y)

tout
{id, inputB {x, f i r s t l y))) { id,x)

L = N 0= (S P E C 0 , X , P 0,T0 , type0,cond0 ,pre0 ,post0 ,j40)

K I P0(J

{id, x) t {id, f i r e B (x, t, vx\ j •••) ̂ xn))

C O - o

p 1.r-o-
object

{id, y) [id, remove(y))

(i d , x)

{id, add(e, y))
{id, out puts (x,p i ,e))

< : o - . a
{id, y)

(id, input s [x , f i r st {y))) {id, x)
R

Figure 9: A Refinement Production

• R is an AHL-net, and the dashed rectangle represents a sub-AHL-net specified

by each production.

• The output tokens along arcs from the dashed transition should have the same

identification number.

In the Fig. 10, place Pc contains creation request, while place Ifd indicates next

available unique identification number that will be assigned to next constructed com­

ponent. The dashed rectangle represents a sub-AHL-net specifying the process of

creation request. Similarly, we can define destruction productions.

3.5.3 D estruction R ules

D efinition 18 (D estruction Production) A d estru c tio n produ ction p: (L <—

K —► R) is in the form of Fig. 11 such that:

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

next(T<

Figure 10: A Creation Production

• Morphisms K —> L and K —> R are in the class M a h l n ',

• The morphism K —► L is an isomorphism;

• R is an AHL-net, and the dashed rectangle represents a sub-AHL-nets specified

by each production.

• The output tokens along arcs to the dashed transition should have the same

identification number.

Figure 11: A Destruction Production

By applying refinement productions and creation/destruction productions to a com­

ponent net as constructed in Definition 15, we can obtain a more refined AHL-net,

called component, which is the atomic entity in a component-based system. A compo­

nent specifies potential communication mechanisms, behaviors, and their relationship

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

for a set of components. Consistent transformation is introduced to constrain the ap­

plications of the above productions.

I rD efinition 19 (C onsistent Transform ation) Given a production p:L *— K —> R,

a transformation G =$■ H where the occurrence of L in G is f = (fsPEC,fp,fT,fA)-'L —>

G, is a consistent transformation if the following conditions hold:

• When p is a refinement production:

f £ M a h l n and morphisms f p and f p are isomorphisms.

• When p is a creation/destruction production:

f E M Ah l n , {f P(P l) ,... ,fP(P f)} and { fP(P f) ,...,fP(P™)} are the input and

output interface of G respectively.

A derivation sequence Go =£• G\ =1* ...Gn_i =§• Gn is called a consistent derivation

sequence if Gi P=£1 Gj+i is a consistent transformation for i= 0,...,n-l.

Definition 20 (C om ponent A rchitecture) Let N0 be a component net over the

function net B N as constructed in definition 20. Given an AHL-net transforma­

tion system A T S — (N0, P), a com ponen t arch itecture C A is an AHL-net such

that there is a refinement production p, a creation production p' and a destruction

production p" in P satisfying one of the following consistent derivation sequences:

• CA = N0;

• N0 4> CA;

• No CA' 4 CA;

• No C A ' € CA;

• No CA' CA" £ CA;

• N0 ^ CA' C CA" 4 CA;

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A marking M of a component architecture C A is a well-defined marking if for any

identification number id £ ID: ((id, (B N id, M)) , P obj e c t) < M ((id,in),P.f) < M

((id ,out),P l0) < M for k = and I = 1 If (((id ,(B N id, M)) , P o b j e c t) ©

© ®i=i,...,m((id’out) ’Po)) ^ we saY there is a component

instance id of the component architecture. The marking ((id, (B N id, M)) , P 0b j e c t) ©

© ® ;=i is called the snapshot of the compo­

nent instance id.

3.5.4 Interaction Rules

Component architectures describe a set of components sharing the same function

net structures but with different queue structures and behaviors. However, there is

limited benefits without providing an approach to integrate them into a single model,

which supports modular and incremental design. Two components interact with each

other by exchanging messages, which is modeled as productions.

D efinition 21 (Interaction Production) An in te ra c tio n p ro d u c tio n p: (L <—

K —» R) is in the form of Fig. 12 where

• Morphisms K —> L and K —> R are in the class Ma h ln I

• The morphism K —> L is an isomorphism;

• R is an AHL-net such that: sender(first(y ')) = id' and receiver(first(y ')) =

id;

An interaction production actually models an unidirectional communication chan­

nel between two component architectures. By replacing id and id' with concrete

components, the production models the unidirectional communication channel be­

tween two components of different component architectures. A channel modeled by

an AHL-net has its own properties and characteristics. It can be a pipeline, a unreli­

able network, or a FIFO structure, and it may have its own message buffer. Therefore

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

O O Q *
P i P i (id, y) (id, a d d (f i r s t (y ') , y))

I

(i d ' , y r) v (id ' , r emove(y '))0 0 p o o
L K R

Figure 12: An Interaction Production

using productions to model interactions between components provides the flexibility

to handle different situations by separating concerns in the process of system mod­

eling. We have to point out that places P, and P0 may be mapped into the same

component (architecture) in the occurrence mapping. In this case, it models the

communication between the same component (architecture).

3.5.5 C reation /D estruction M essage Passing Rules

The messages of creation and destruction are distinguished from other messages

that are sent from one component to another component (Currently, we do not con­

sider message broadcasting.) since the receiver of such a message is not a com­

ponent, but a component architecture. The ultimate reason is due to the fact of

object-oriented concepts that it is class, not an object to create or destroy an object.

Therefore, we have to introduce new productions to transfer creation or destruction

messages from a component to a component architecture.

D efinition 22 (C reation /D estruction M essage Passing Production) Given

a component architecture CA, a crea tion m essage passin g produ ction p:

(L «— K —> R), describing creation message passing to CA, is in the form of Fig. 13

where

• Morphisms K —» L and K —> R are in the class M a h l n ;

• The morphism K —> L is an isomorphism;

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• R is an AHL-net satisfying: kind(firs t(y)) = Creation, sender(first(y)) = id,

and receiver(first(y)) — CA. In the figure, the dashed rectangle represents a

sub-AHL-net specified by each production.

Similarly, by replacing place Pc with place Pa we can describe the destruction message

passing to component architecture CA.

O O

Po
o

L

Poo
K

(id, y) (id, r emove(y))

Q po

R

Figure 13: A Creation Message Passing Production

The following theorem summaries the relationship among interaction productions

and creation/destruction message passing productions.

Theorem 1 Let Ni be component architectures over function nets BN i for i—l,...,n;

and P a set of interaction productions and creation/destruction message passing

productions. Given any two productions p,p' e P , the derivation sequence G =

N 0 + ... + jV„ =f> H =4> X via p and p' is sequentially dependent.

It is easy to prove the above theorem since any two sequential independent pro­

ductions do not delete any part of original AHL-net.

D efinition 23 (Valid Transformation) Given a production p —L K R, a

transformation G =§► H where the occurrence of L in G is f= (fsp e c , f p , f r , f a)'-L —*

G, is a valid transformation if the following conditions hold:

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• When p is an interaction production:

f € M a h l n and f p (P i) belong to the input interface of some component archi­

tecture, and f p (P 0) belong to the output interface of some component architec­

ture.

• When p is a creation/destruction message passing production:

f € M a h l n , and f p(P0) belong to the output interface of some component

architecture, and fp(Pc) is the creation place of some component architecture.

A derivation sequence G0 =£• Gi ...Gn_i ^ Gn is called valid derivation sequence

if Gi P=/ Gi+ 1 is a valid transformation for i=0,...,n-l.

3.6 Com ponent C om position

D efinition 24 (System) Let Ni be component architectures over function net BNi

for i= l,...,n; and A T S = (N i+ ...+ N n, P) an AHL-net transformation system where

P is a set of interaction productions and creation/destruction message passing pro­

ductions. A sy s te m (S Y S ,M) is an AHL-net with well-defined marking such that:

3P C P such that N i + ... + Nn =4> S Y S is a valid derivation sequence over P;

According to the parallelism theorem and the above theorem, the AHL-net S Y S

exists and does not depend on the order of application of rules in P. The components

in the system (SYS , M) is decided by the well-defined marking M, i.e. the projection

of M over each component architecture is a well-defined marking.

3.7 Analysis

We now analyze function nets and systems defined in Definition 24. More specifi­

cally, an approach is proposed to check if a Petri net is a function net. Additionally,

we show the way to model checking the system net derived from the framework.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.7.1 Function nets

Not all algebraic high-level nets can serve as function nets. A function net has a

finite behavior given an initial marking. Additionally, a component should be capable

of handling any messages put in one of the input place when it is in a stable snapshot.

D efin ition 25 (F unction N e t P ro p e r ty) A function net must satisfy the follow­

ing properties:

1 A function net cannot have an infinite firing sequence from any marking M such

that (N , M) = input b ((N , M0), e) where M0 is a stable marking and e G Qm.

2 For any stable marking M , given an event e, there is a place p € 01(e) such that

there exists an enabled transition t G P* under the marking M © (e, p).

These two properties ensure that a component eventually will respond to all mes­

sages in its input queue. It is easy to check that Petri nets in Fig. 5 are not function

nets because they violate the second property. For example, a thinking philosopher

cannot handle a fork available message although this message is not correct with

regard to the status of the philosopher. In other words, those function nets can­

not handle unexpected messages, which in general indicate a design error. In order

to make them function nets, exception handling transitions and exception recording

places are added as dashed rectangles and circles respectively in Fig. 14. By intro­

ducing exception recording places, it is easier to check the occurrence of unexpected

messages during model checking.

A function net is an open system since the message sequences it handles is variable

and decided by its environment in runtime. Such a characteristic makes it hard to

check whether a Petri net is a function net. In other words, we cannot provide a

general rule or theorem to judge if a Petri net satisfies the above two properties.

However, we can make sure a Petri net satisfying the above two properties if they

meet some conditions, though vice versa is not always correct.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ExcepRecord2 ForkAvail Avai Fork ReleasedFork

Exception^
1 1

1
/ ^ . 1 u — u

A / I

11 ' 1 ' I \ 1 '

AssignFork

o

RevokeFor c i Exception 1

ForkRequest ForklnUse ExcepRecordl

Figure 14: The Valid Function Net of the Servant

T h eo rem 2 An AHL-net satisfies property 1 if for any loop p i , tu P 2 ,h , ■■•Hn-iiPn =

Pi where Pi E* L A p » + i E t* i= l,...,n-l, there is an input place p E Pin not in the loop

such that : 3k : p E* tk A* p = 0.

The proof is straightforward. Actually, theorem 2 means that any potential infi­

nitely firing sequence needs “assistance” from its input queue. An incoming place

cannot be in a loop since it has no incoming arcs.

T h eo rem 3 An AHL-net satisfies property 2 i f for anyp E Pin, there is a set of tran­

sitions {ti,. . . ,tn}C p* where *L = {p} such that for any assignment ass to variables

X : V?=lass(cond(t)) = true

3.7.2 S ystem n e ts

System nets derived from the framework according to the Definition 24, unlike

function nets, are closed Petri nets, which means a variety of traditional Petri net

analysis techniques can be applied to detect errors and check the correctness of a

model with regard to some properties specified in requirements. In this paper, we

focus on exploring model checking technique to check if a synthesis net is correct

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

with regard to specified LTL (Linear Temporal Logic) formulae. There are some off-

the-shelf model checking tools such as SPIN [80], SMV [105]. However, we choose

Maude [48] as our analysis tool due to the characteristics of Maude.

Unlike other model checking systems, Maude is a high-performace reflective lan­

guage supporting both equational and rewriting logic specifications and rewriting

logic computation, which makes Maude applicable to many potential application ar­

eas - beyond traditional ones such as hardware and communication protocols. For

example, the potential application areas are hard to specify for SPIN, which is de­

signed and optimized for distributed algorithm applications, because SPIN enforces

the communication between processes through FIFO channels and has limited sup­

port for data types. In addition to the more expressive power, Maude has a collection

of formal tools supporting different forms of logic reasoning to verify program prop­

erties, including [36]:

• a model checker to verify LTL properties of finite-state system modules;

• an inductive theorem prover to verify properties of functional modules;

• a Church-Rosser checker, to check such a property for functional modules;

• a Knuth-Bendix completion tool and termination checker for functional mod­

ules; and

• a coherence checker for system modules.

Specific to algebraic high-level nets, it has several advantages to take Maude as

the model checking tool. First, its specification language is an enhanced form of

algebraic specifications, which makes transformation from ALHN to Maude easier

and automated. Second, the Maude LTL model checker can model check systems

whose states involve data in data types of infinite cardinality, which is crucial for

model checking high level Petri nets. Third, in addition to model checking, we can use

the inductive theorem prover directly without major modification to the specification.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Furthermore, the Maude LTL model checker is comparable to other high-performance

model checker such as SPIN in time and space performance [48].

It is straightforward to transform S IG b n to a functional modules in Maude that

defines data types and operations on them by means of equational theories. Functional

modules also support multiple sorts, subsort relations, operator overloading, and

assertions of membership in a sort. The functional module for S IG b n -Algebra for

component architecture servant in dining philosophers problem is shown in Appendix

B. The Petri net simulation can be defined by a system module in Maude. A system

module specifies a rewrite theory, which has sorts, kinds, operators, and can have

three types of statements: equations, memberships, and rules, all of which can be

conditional. The system module for component servant is also shown in the Appendix

B. In our implementation, a rule is defined for each transition with a valid assignment.

For example, there are two rules Tresponse-AssignFork and Tresponse-RevokeFork for

the transition tresponse, each of them corresponds to a valid assignment.

Generally, when we talk about LTL property of a plain Petri Net model, the atomic

predicate is in the form of p(a), which is satisfied by the Petri net if place p contains a

token a under current marking M , denoted by M |= p(a). However, it is inconvenient

to express properties of synthesis nets using such atomic predicates since a token

itself can be a Petri net. Therefore, a new kind of atomic predicates is introduced for

AHL-nets of component-based system.

D efinition 26 (Predicates and Formulae o f Petri N ets)

• For any simple type A s, we assume that there is a set of propositional formulae

<f>s, each of which specifies a subset Sv of A s. A predicate <p under an element

e of A s is valid if:

e (—Us F ̂^ ^

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• For each product type A Sl x A S2, the associated set of formulae is defined as

<J>Sl x <I>S2. A formula (p i ,p 2) under an element (ei,e2) is valid if

(e i,e2) \= ASl x A S 2 (pi, P2) ei I=AS1 Pi A e2 | = a S 2 P2

• Let N — (SP EC , X , P, T , type, cond, pre, post, A) be an AHL-net and M

is a marking of N . The set of predicates of AHL-net N and its semantics are

defined as the following:

— For each place p and a formula <p of the type type(p), pip) is a predicate.

A predicate p(p) is valid if:

(N, M) |=jv p{p) <—> 3a G Atype(p) : a Ha^p̂ P A (a,p) < M

— A formula of AHL-net N is constructed by boolean connectors A, V,

and additional connectors A such that

Ve G A type(p) : e i^Atwe(p) P

«N , M) [= j v Pi(pi)) A

((N , M) \=N p2(p2))

((N ,M) K P i (^ i)) V

((N , M) KVP2 O 2))

3ei G Atype(Plp e 2 G Afype P̂2̂ .

ei V̂i A e2 (=AtVpe(p2) ^ 2 A

(ei,pi) © (e2,.p2) < M

The connectors A and A are equivalent if pi = p2- Otherwise, there is a small

difference, i.e. p(pi) A p (p 2) => p(pi) A p(p2) since p(pi) Ap(<p2) describes the case

54

(N, M) |=jv ~'p{p)

(.N , M) hiv (Pi(pi) Ap2(<̂ 2))

(N, M) f=7v (Pi(pi) S p 2 (p2)) «=►

(N, M) [=jv (pi(pi) A p 2 (p2))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that there are two tokens in place p satisfying predicates <pi and p 2 respectively,

while there can be only one token in place p satisfying p \ A <p2. The predicate

Fork.P0bject{AvailFork(forkl)) describes markings of the servant such that place

Pobject contain a token (N , M') where the number 1 fork is available under the mark­

ing M '.

In order to model checking system nets obtained through the approach proposed

in previous sections, we need to “uplift” properties of lower level Petri nets to upper

level, i.e. from function nets to component nets since it is awkward to model checking

properties of a token. Such idea is not viable in general since lower level Petri nets

may appear in different places. Fortunately, in a system net, the token representing

a concrete function net is always in the same place Pobject■ Therefore, a formula of

a function net id always has an counterpart in the system net. This relationship is

defined by the following definition, which only considers future time operators □, O

and U.

Definition 27 Function M maps a future time LTL formula p of a function net

N of component instance id to a future time LTL formula of the system net in the

following way:

• I f p is a propositional formula:

= P o b j e c t d f d , <p))

where (id ,p) is a formula of the product type ID x System defined in Section

3.1

• I f p = lp ' where I is a future time operator □, or O, and p' is a formula of

function net N:

M (p) =?M (p’)

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• I f <p = (p'XJip" where p' and p" are formulae of function net N:

M((p) =

T heo rem 4 Let N c be a component net as a part of a closed system net, and N f be

a function net of a component instance. Let p be a LTL formula of N f . Then <p is

satisfied by N f if and only if the formula M(<p) is satisfied by the system net.

The proof is straightforward due to two facts: First, A function net stays in

the same place during its lifetime. Second, the marking of a function net is also

a part of global marking of system nets. Some atomic predicates defined in the

component architecture philosopher is shown in the Appendix B. The module

S IG -B N -P H IL -P R E D S defines atomic predicates for function net of philosopher,

while the module P H IL _ P R E D S defines atomic predicates for component architec­

ture of philosopher. In the module P H IL -P R E D S , the formulae of function nets is

expressed as a part of condition instead of parameters of formulae of component nets.

We have checked mutual exclusion and starvation properties of dining philosopher

problem. Mutual exclusion property means two adjacent philosophers cannot eat at

the same time:

□ ((p P S P O B J-E a ting (ph ill ,ph il l , 1) ApPSPO BJ-Eating(phil2 ,phil2 ,2)))

Starvation property means if a philosopher wants to eat, he will eventually get a

chance to eat:

n (p P S P O B J-P 2 (p h il l ,p h il l , l) —► 0 (p P S P O B J -E a tin g (p h i l l ,p h i l l , l)))

Unfortunately, starvation property does not hold, i.e. a philosopher may starve

to death although he has sent his request to the servant. The counterexample shows

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that the problem is because the system always responds to other philosophers’ request

such as leaving table and joining table. Therefore, the philosopher who wants to eat

is “stuck” after he sent his fork request, and never got a chance to obtain response

from the servant. The starvation property should be hold with fairness constraint.

Unfortunately, the Maude LTL model checker does not support the fairness constraint.

3.8 S um m ary

A framework to model component-based system in an incremental way is proposed

in this chapter. The framework separates concerns of component models and their

interaction models explicitly. A component is modeled by an algebraic high-level

Petri net. By introducing the idea of “net as tokens” to algebraic high-level Petri

nets, we can model more complex components due to the flexibility in handling the

relationship between component behavior and communication mechanism. Compo­

nent interactions are specified by productions based on HLR-category (A H L N E T ,

M a h l n) - Additionally, productions can also be explored to refine component behav­

ior and its relationship with communication mechanism, and model functionality of

dynamic component creation and destruction. In the framework, different techniques

are synthesized seamlessly.

In order to analyze system nets constructed through the framework, model checking

is explored to verify component properties. Model checking is very effective and

verification is completely automatic. We have used Maude in the running example.

The translation is straightforward. Although we translated the example to Maude

function and system modules manually in this case, the translation process can be

fulfilled automatically since each firing of a transition can be viewed as a rewriting

step of current marking. However, model checking has its own limitation - it is in

general not applicable to infinite state systems. Specific to Maude, it cannot handle

complicated system nets in terms of net structure and involved sorts since searching

next applicable rewriting rule is time and space consuming.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

There are two kinds of properties to be verified: component behavior property

and communication protocol property. Verification of component behavior property

generally involves one component, while verification of communication protocol prop­

erty involves several even the whole system nets, which may be quite large in some

situations. To solve this problem, we are investigating several compositional model

checking techniques. Among the various proposed automated compositional verifica­

tion techniques in temporal logic [19,35,64] and in Petri nets [85,154], we found that

the interface module technique [19] and the 10 graph technique [154]are most rele­

vant to our research. We are currently focusing on how to adapt these compositional

verification technique to analyze system nets obtained through our framework. We

are also studying compositional temporal logic proving techniques developed in [1],

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 4

VERIFICATION AND VALIDATION OF UML DESIGNS

4.1 Introduction

Unified Modeling Language (UML) [120], the de facto object-oriented modeling

language, supports multi-view approach, i.e. artifacts created in the development

process for different system aspects are modeled and analyzed in various kinds of

UML concepts. More specifically, class diagrams specify system static structure;

statechart diagrams describe behavior of individual classifiers; activity diagrams em­

phasize control flows and object flows for coordinating low-layer behaviors, rather

than which classifier own those behaviors; interaction diagrams including sequence

diagrams and communication diagrams illustrate implementation of use cases by de­

scribing interactions among objects to complete tasks.

The multi-view and multi-notation approach helps designers focus on individual

viewpoints so that models are more manageable and less error-prone. However, in­

consistencies arise because “the models overlap - tha t is they incorporate elements

which refer to common aspects of the system under development - and make asser­

tions about these aspects which are not jointly satisfiable as they stand, or under

certain conditions” [147]. The detection of inconsistencies is not easy due to the

multi-notations. Generally speaking, there are four broad approaches to detect incon­

sistencies in software models: the logic-based approach, the model checking approach,

the specialized model analysis approach and the human-centered collaborative explo­

ration [147]. In the UML community, most of the research explore the third approach

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to detect inconsistencies of UML models, i.e. UML models are translated into a

common semantic domain. UML inconsistency detection is even more difficult since

syntax and semantics of UML are informal and imprecise compared to formal specifi­

cation languages. Although UML inconsistency has been widely studied, a majority

of them focus on the formalization of individual diagrams and only check consistency

within one or between two diagrams.

In this chapter, the framework proposed in Chapter 3 was explored to detect UML

inconsistency among multiple diagrams, more specifically class diagrams, statechart

diagrams, activity diagrams, interaction diagrams including sequence diagrams and

communication diagrams. Component nets are constructed from class diagrams, ac­

tivity diagrams and statechart diagrams, while transformation rules are extracted

from interaction diagrams. A (sub)system net can be acquired by applying a set of

transformation rules to a set of component nets. Various kinds of UML inconsisten­

cies can be detected by exploring different analysis techniques on derived (sub) system

nets.

The rest of the chapter is organized as the following: section 2 provides an overview

of related works on UML. The formalization of UML diagrams to obtain two-layer

AHL-nets and transformation rules are specified in section 3. The inconsistences

based on Petri nets are defined and detected in section 4. Finally, a summary is

given.

4.2 R elated Works

This section introduces the related works on the formalization of UML diagrams

and UML inconsistency detection.

4.2.1 Form alization of UM L Diagram s

UML, as a family of languages, lacks precise semantics since static and dynamic

semantics of UML diagrams are defined in plain English language, which is inherited

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ambiguous. Therefore, lots of formal languages have been adopted to provide precise

semantics for various UML diagrams for the purpose of analysis.

A b s tra c t S ta te M achines

Abstract State Machines (ASM) [82], proposed more than 10 years ago, were ini­

tially used to provide operational semantics for programming languages. Later, due

to its ability to simulate any algorithm without implementing them, it was explored

for high level design and analysis. In past several years, ASM was used to provide a

formal and more precise semantics for UML.

There are two approaches to formalize UML based on ASM. One is to formalize

UML diagrams on meta-model level [118]. The UML meta-model is a subset of class

diagrams. All other diagrams including class diagrams are defined by the meta­

model. Therefore, the formalization of UML meta-model gives precise semantics for

all other diagrams. However, this makes it hard to analyze UML models based on

the semantics. The other approach is to formalize UML diagrams such as activity

diagrams [23], statechart diagrams [24,37], class diagrams and object diagrams [142],

G ra p h T ran sfo rm atio n

Graph transformation [43], also known as graph rewriting or graph reduction, com­

bines advantages of graphs and rules into a single computation paradigm. “It has

been studied in a variety of approaches, motivated by application domains such as

pattern recognition, semantics of programming languages, compiler description, im­

plementation of functional programming languages, specification of database systems,

specification of abstract data types, specification of distributed system etc” [4]. Since

UML itself is a diagrammatic language, it seems reasonable and promising to apply

techniques developed in the graph transformation field to UML.

At first, graph transformation was applied to classic Statecharts in [103]. Later,

different UML diagrams were formalized by graph transformation, such as class dia­

grams in [58], statechart diagrams in [56,57,92,104], collaboration diagrams in [50,76],

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and sequence diagrams in [67]. However, these works only focused on one diagram,

which make them impossible to detect inconsistency between diagrams. Therefore,

here we only discuss the work of [59] and [93].

Using graph transformation, [93] and [59] propose an approach to integrate class di­

agrams, object diagrams, statechart diagrams, sequence diagrams and collaboration.

More specifically, they defined a system state as an object diagram that is extended

with object states and event queues. Then graph transformation rules can be derived

from class diagrams and statechart diagrams. The graph transformation rules associ­

ated with class diagrams defines semantics for each operation in class diagrams, while

graph transformation rules associated with statechart diagrams define the semantics

for each transition. By combining these two kinds of graph transformation rules,

the change of system states as a response to events can be defined. Collaboration

diagrams and sequence diagrams can be verified based on system states with these

rules.

Their work is different from my research. First, they still did not formalize class

diagrams, although they view the semantics of class diagrams as the set of valid object

diagrams. Therefore, we cannot detect inconsistencies related with class diagrams.

Second, graph transformation is a variant of term rewriting. Although they can be

executed or explored to prove some properties, generally speaking, analysis based on

them is hard and few tools support their analysis. Finally, we cannot have a clear

idea about semantics of each operation in class diagrams until detail design. Thus,

the advantage of their work cannot be explored at early stage.

P ro to ty p e V erification S ystem

The Prototype Verification System (PVS) [124] is a formalism for design and analy­

sis of system specifications. The PVS environment consists of a PVS specification

language [123] based on classical, typed higher-order logic, an interactive theorem

prover [140] and other tools.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

It has been shown that UML diagrams can be formalized by PVS. For example,

class diagrams are formalized in [7,10], statechart diagrams in [8,149] and sequence

diagrams in [9]. However these formalizations are separated from each other. There­

fore, only single diagrams can be analyzed based on this method, which is not enough

for our research goal. Additionally, PVS specification language is based on high order

logic, which is not well suited to model dynamic behavior.

O bject-Z

Object-Z [145] is an object-oriented extension of the Z formal specification language.

During last several years, Object-Z was used to formalize UML diagrams, such as

class diagrams in [87,89], statechart diagrams in [88,90], and collaboration diagrams

in [5]. However, no efforts have been made to integrate them into a complete Object-

Z schema. Also due to the property of Object-Z, it is not suitable to specify the

dynamic behavior, and there is few techniques and tools to support the analysis of

Object-Z or Z specifications.

A lgebraic Specification a n d LO T O S

Algebraic specification [45,46] was used to formalize UML class diagrams [3,27,53].

However, algebraic specification is best at the description of abstract data type, it

is hard and inconvenient to model the system behavior by itself. Therefore, alge­

braic specification has to be combined with other formal languages to model systems.

The Language of Temporal Ordering Specification (LOTOS) [25] and Enhanced-

LOTOS [150], which combine algebraic specification (ACT-ONE [45]) and algebraic

processes such as Communication Sequential Processes (CSP) [78] and Calculus of

Communicating Systems (CCS) [110], was explored to formalize UML diagrams, such

as class diagrams in [38], statechart diagrams in [38,77,159]. In these works, only [38]

considered the transformation from class diagrams and statechart diagrams to LO­

TOS. However, the connection between LOTOS theories derived from both diagrams

was ignored. Additionally collaboration/sequence diagrams was still not formalized.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another problem of LOTOS is that LOTOS is hard to read and calculus of algebraic

process is not powerful enough to model the full dynamic behavior of UML.

P e tr i N e ts

Petri nets, as a graphic modeling language for concurrent and distributed systems,

have a close relationship with UML - State machine diagrams have a similar semantics

to Petri nets and activity diagrams are defined in Petri net semantics. Additionally,

Petri nets can be used as a complement to UML [29,84] during software development

as well as the semantic domain to formalize UML diagrams [15,40,41,72-74,81,136].

Unlike previous works on the formalization of UML diagrams using Petri nets, we

use Petri nets to construct a complete behavioral model for each class from multiple

diagrams instead of an individual diagram.

4.2.2 In co n sistency D e tec tio n

Inconsistency among multiple goals, requirements or models is a active research

topic in software engineering. In the 90s,, it was concluded that it is not necessary

to maintain absolute consistencies among software development because by doing so,

it hinders the concurrency during software development and limit the design freedom

[54], In many cases, it may be desirable to tolerate or even encourage inconsistency,

“to facilitate distributed collaborative working, to prevent premature commitment to

design decisions, to ensure all stakeholder views are taken into account” [117].

During last 10 years, lot of helpful results were obtained. For example, new logics

such as paraconsistent logic [31,42,146], Quasi-Classical logic [83], and techniques such

as the derivation of “boundary conditions” by goal regression [157] and the detection

of inconsistency using pattern of divergences [156] were developed to detect and reason

about inconsistency. Additionally, different solutions to inconsistency were proposed

such as tolerating inconsistency [14] and “Lazy” consistency [114]. However, most of

the research was focused on requirement engineering. In other words, the research of

inconsistency on other phrases of software development process is ignored.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UML, the de facto object-oriented modeling language, covers all the stages of soft­

ware development process, not only the requirements capture, but also system design

and detail design. Therefore, UML inconsistency detection is a new challenge for soft­

ware engineering community. Even worse, although UML is a modeling language, it

actually consists of multiple diagrams with their own notions and terms. During two

recent workshops on UML inconsistency [94,95], lot of concrete inconsistencies were

discussed and different techniques were proposed to detect specific inconsistencies.

However, there are no systematic work to detect UML inconsistencies. Currently,

only a simple classification of UML inconsistency (vertical v.s. horizontal, inter v.s.

intra, syntax v.s. semantics) were recognized by the community.

There are two ways to analyze UML diagrams: model checking and theorem prov­

ing. Model checking is used to check if a given predicate is satisfied against the

model by exploring all of its possible execution pathes. Currently, we can translate

UML diagrams, especially statechart diagrams and collaboration diagrams, directly

to input languages of model checkers such as PROMELA of SPIN [80]. The research

in [109,139] take this way. While another way is to formalize UML diagrams based

on a semantic domain, and then the model of the semantic domain is translated into

input languages of model checker.

In our research, the latter approach is adopted since model checking is not the

ultimate purpose of our research. Our purpose is to analyze UML diagrams based

on a semantic domain. Model checking is just one of the analysis method we take.

However, there are some benefits we can obtain by combining these two approaches of

model checking UML diagrams. For example, it is impossible to prove the correctness

of formalization of UML diagrams directly. But by checking the same properties

against the same UML diagram through these two approaches, we can increase our

confidence about the formalization.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 R u n n in g E xam ple

The running example is a simple online shopping system as shown in Fig. 15.

There are only three classes: Customer, Cart and Item. Since the owner of the store

thinks their price is so low, each customer can only buy no more than five items each

time.

The Fig. 16 shows the UML formalization of the online shopping system. From

the figure we can see classes in class diagrams consist of operations and attributes

(The relation association is treated as an attribute of associated classes). The class

attributes and constructors are described as algebraic class specifications, while oper­

ations defined in activity diagrams are formalized as a Petri net. Class behaviors are

specified by statechart diagrams, which are formalized as Petri nets. The execution of

an activity in statechart diagrams is represented as a transition in Petri nets, which is

later refined by a Petri net derived from an associated activity diagram. By refining

all executions of activities, we now obtain function nets for all classes. Based on func­

tion nets, component nets are constructed with regard to policies of event pools of

class instances. Transformation rules are extracted from interaction diagrams based

on messages passed between instances of multiple classes. An AHL-system, as we

discussed in the previous section, can be constructed based on derived Petri nets

and transformation rules. It is flexible to derive Petri nets models of simple systems

describing single scenarios or complex systems containing all scenarios described in

UML diagrams.

4.4 A lgebraic V iew of U M L C lass D iagram s

In this section we sketch the main transformation rules for UML concepts of class

diagrams into algebraic specifications. We assume that for each attribute there is one

or more operations that only read or update the attribute value. Such operations are

called primitive operations. The access to attributes is through the invocation of these

primitive operations. The classes with primitive operations and constructors can be

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C u s to m e r

a d d r : S trin g

b illin g ln fo : S trin g

a d d r () : S trin g

billinglnfoQ ; S trin g

+ c a rt

a d d r e s s : S tring

b illin g ln fo : S tring

Item

c a ta lo g N u m : int

c a ta lo g N u m Q : int

+ c o n te n t

0..5

- a s s ig n e d T o

 <X
0..1

C a r t

a d d r e s s () : S trin g

s e tS h ip p in g A d d r(S tr in g : v o i d) : vo id

b illin g ln fo O : S trin g

se tB illin g ln fo (S trin g : v o i d) : vo id

a d d lte m (ite m : v o id) : vo id

(a) C lass D iagram

(created - o

Addltem

item item.setAssignedTo(self) j

addT oContent(item)

«localPostcondition»
content.size()<=5

/new Item() ;cart.addltem{item)

[Addingltems ^

/cart. setShippingAddr(addr)

ChangingBillinglnfo)

/cart.setBillingInfo(billInfo)

ChangingShippingAddr)

(b) A ctiv ity D iagram

m
(c) C ustom er

Interaction!)

« c r e a t e »

addltem(item)
setAssignedTo(cart)

« r e t u m »
« r e t u r a »

parj

cart: Cart

item:Item

cl:Custom er

[created o
aH dTtftmrifp.m V

j addltem(item)

Addingltems >
setShippinglnfo(addr)/
setShippinglnfo(addr)

(ChangingShippingAddr)

setBillingInfo(bill)/
setBilHngInfo(bilI)

(ChangingBillinglnfoJ

(d) Sequence D iagram

(commit J

I

(e) Cart

Figure 15: A Simple Online Shopping System

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

T r a n s fo r m a t io n r u le s
fro m in te r a c t io n d ia g r a m s

P e t r i n e t fro m
s t a t e c h a r t d ia g r a m s

addjagEteois

o m p o n e n t n e t:
a rt

c o m p o n e n t n e t:
C u s to m e r

addltemeven:
Pobj e o iP

o b j e c t

eBiUin

changeStippmgAdd;

r e f in e d b yP e tr i n e t fro m
s t a t e c h a r t d ia g r a m s

created addmgftems

mitral

retumVaiue
exceptioa

d u iig eS iiip p in ^ d d ' ^ 3

■ ageBi.final r .h an g f t^ i H:<ti jrTTifo

y.s^sdignedTofji.idenfiiyQ}

R* := x.SddToCoaitMitCy)!

Figure 16: UML Formalization Pattern

formalized by abstract data types (ADTs). An instance of a class is represented by a

value of the ADT associated to that class. Each ADT value is assigned an identity,

which is treated as an explicit read-only attribute.

Among different approaches to describe main features of object-oriented concepts,

we adopt the work of [129] to specify classes since it is more close to the class notations

in UML. In particular, a class specification Cspec consists of five algebraic specifica­

tions: P A R (parameter part), E X Pi (instance interface), E X P C (class interface),

I M P (import interface) and BO D (implementation part), and five algebraic specifi­

cation morphisms: P A R —► IM P , P A R —> EX Pi, E X P i —> E X P C, I M P —► B O D ,

and E X P C -► BOD.

A class maps onto an ADT with constructors, primitive operations and constraints.

The constructors express the instantiation process. Each ADT at least has one con­

structor. If no constructor is explicitly declared in class diagrams, a default public

constructor without arguments is specified in the class specification. Normally, the

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

instance attributes are the parameters of the constructors. Some constraints are in­

troduced for constructors to specify attribute values of created instances. The above

generated operations are distributed to the instance interface, class interface or im­

plementation according to the visibility of primitive operations and constructors.

An association declares that there can be links between instances of the associated

types. A link is a tuple with value for each end of the association, where each value is

an instance of the type of the end. A navigable end is an attribute ([120], Page 80),

therefore, a binary association can be treated as an attribute of classes of association

ends. For an association with N > 2 ends or an AssociationClass is formalized as a

class with properties. This class maintains the set of links among association ends.

Like the binary associations, a link refers to values of association ends through their

identities instead of their value. By doing so, we can isolate association structures

from structures of related classes. Therefore, it is possible to predefine association

classes, which share almost the same instance and class interface, but have different

implementations and constraints. There are two special associations: aggregation and

composition. We treat aggregations as plain association, therefore no special action

is needed. Composition is a form of special aggregation with strong ownership such

that the part is created by the whole and the whole destroys the part before itself

is destroyed. However, the order and the way in which part instances are created or

destroyed is a semantic variation point, and generally not specified in class diagrams.

In our work, we assume the part instances are created and destroyed as parts of

the creation and destruction of whole instances, which is modeled in creation and

destruction transformation rules

4.5 Form alization o f S tate M achine

State machines are generally used to express the behavior of part of a system. In

our work, its usage is more specific: describing the behavior of classes declared in

class diagrams. Petri nets are similar to flat state machines in terms of states/places

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and transitions connecting them. Variant Petri nets have been used to provide a

more formal semantics [20,40,81,107,137]. Our previous work [40] is adopted as the

foundation (Please refer to Appendix C for the formalization of UML state machine).

Although it is based on hierarchical predicate/transition nets, the approach itself can

be easily applied to obtain AHL-nets. However, several modifications to the origi­

nal method are proposed to meet the definition of two-layer AHL-nets and therefore

provide a better understanding of state machines in Petri net concepts. More specif­

ically, the most important principle of the modification is to use component nets to

model state machines by separating concerns of behavior from concerns of policies

on event pools that are a semantic variant in the UML white book [120]. Therefore,

event pool and run-to-completion assumption are modeled by the upper-layer Petri

nets, while the lower-layer Petri nets (i.e. function nets) only specify the responses

of state machines to events. By doing so, function nets exactly model the behavior

of statechart diagrams, nothing more and nothing less.

The following summarizes the modification to the approach of formalizing state

machines based on Petri nets in [40]:

• The place INPU T is replaced by a set of places, each of which is served as an

input place for a distinct type of events.

• The place OUTPUT is replaced by a set of places, each of which is served as

an output place for a distinct type of events.

• An additional place serving as the holder for the class sort specified in previous

section is added by connecting all transitions that need to access the instance’s

attributes or methods.

• Each activity is represented by a transition, which is later refined by a Petri net

derived from the corresponding activity diagram (see section 4.6).

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• For each synchronous operation call or signal, a message with return value is

replied to the sender, otherwise the return value (if exists) is ignored.

• A component net is constructed based on function nets obtained from previous

steps with the consideration of the run-to-completion assumption (Fig. 8 and

the policies of event pools. The policies on event pools of instances primarily

describing the order of dequeuing and the size of the pool are specified by users

in addition to UML diagrams.

The first two modifications is to meet the definition of function nets, while the

third modification is to integrate class specifications with its behavior. However,

we have to point out tha t the resulted Petri nets are not complete since activities

are not supported by class specifications and need to be refined later as the above

fourth item shows. Only after the integration with Petri nets derived from activity

diagrams (discussed in the next section), resulted Petri nets for statechart diagrams

are complete in terms of syntax and semantics.

4.6 Form alization of A ctiv ity Diagram s

Activity diagrams represent UML activity graph expressing sequence, choices and

parallel execution of actions. Activities may describe procedural computation, in this

context class operations, which is the only usage of activity diagrams in our work.

More specifically we only consider following actions in activity diagrams: Invocation-

Action (including CallOperationAction, SendSignalAction, and SendObjectAction),

ReplyAction, CreateObjectAction, DestroyObjectAction, AcceptEventAction. Since as­

sociations are explicitly treated as classes, the link related operations are treated as

normal invocation actions.

In UML 2.0, “activities are redesigned to use a Petri-like semantics instead of

state machines” [120]. Although one author advised that this statement is “only

a metaphor for flow modeling without implying a complete mapping to Petri nets”

[22], the metaphor can be made concrete to provide a better understanding of its

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

semantics. The available works of transforming activity diagrams to Petri nets [16,

22,39,96] emphasize data and control flow of actions, but the semantics of actions

themselves is missing. We try to overcome this problem by connecting the actions with

corresponding class specifications. In our work, we restrict to intermediate activities.

We do not consider exceptions and structure features such as activity group and

swimlane of activity diagrams. In our work, instead of passing objects, only object

ID is passed in the actions.

An action is generally represented by a Petri net, as showed in Fig. 17. An

asynchronous CallOperation Action with pre- and post-conditions is formalized in the

way that pre-condition is first tested, then an event for the invocation of the operation

is sent to the target, finally the post-condition is tested. Pre- and post-conditions

are explicitly formalized as conditions of corresponding transitions in Petri nets. For

a synchronous CallOperationAction, an additional place is added to receive return

value so tha t the activity can continue. The dashed place containing the specified

event in Fig. 17(c) is an input place in the derived Petri net from the corresponding

state machine. An object node is represented by a place containing the object ID.

The initial and final nodes are also formalized as a single place. Each parameter

of activity diagrams (if exists) is described as a place. The transformation of other

control nodes such as joint, fork and choices are similar to the work in [16]. The Fig.

16 shows a Petri net derived from the activity diagram addltem.

The transition t representing an activity in Petri nets P N S from statechart dia­

grams can be refined by a Petri net P N a derived from associated activity diagrams

in following steps:

• Delete the transition t and related arcs from the Petri net P N S\

• Add the Petri net P N a to the Petri net P N S;

• Add a new transition such that its incoming places are the incoming places

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Message

start p re jond Post_cond end

(a) C allO perationA ction

start pre_cond post_cond end

" " - o
Message

(b) Synchronized C allO perationA ction

end Operation

(c) A cceptE ventA ction (d) A ccept Call A ct ion

(e) O therA ction

end

Figure 17: Petri Net Representation of Actions

of the transition t in P N S and its outgoing places are the places in P N a cor­

responding to parameter nodes and the initial node. The responsibility of the

transition is to extract parameters of the activity from event parameters and

start the activity.

• Add a new transition such that its incoming place is the place in P N a cor­

responding to the final node, and its outgoing places is the outgoing places of

transition t in P N S. The firing of the transition indicates the end of the activity.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.7 Transform ation R ules From Interaction Diagram s

In the previous sections, we discussed the approach to obtain a component net for

each class from related class diagrams, statechart diagrams and activity diagrams.

In order to achieve system modeling based on Petri nets, transformation rules are

necessary to integrate these components into a system. In this section, we explain how

to obtain transformation rules from interaction diagrams, more specifically sequence

diagrams and communication diagrams.

In our framework, transformation rules are used to model the communica­

tion/channel between objects, which is happen to be the concept of messages in

interaction diagrams. For each message, we can identify sender, receiver, and mes­

sage type; and therefore a transformation rule can be constructed. Fig. 18 shows

the transformation rule corresponding to the message addltem from the customer

to the cart showed in Fig. 15(d). The transition tpass can be replaced by a Petri

net that models more complicated channel for the message passing. A message has

a property to indicate if it is a synchronous call operation or a synchronous signal,

which expects return value before the sender can continue. Asynchronous message

do not expect a reply message. The statechart diagram of the receiver is responsible

to distinguish synchronous messages from asynchronous messages and response with

a reply message to the sender.

The creation and destroy messages should be handled different since an object

cannot create or destroy itself. Such messages should not be handled by instances,

but by classes, component net in our case. The transformation rules for creation or

destroy messages are similar to Fig. 18 except the place Pi, which is replaced by

the place Pc(Pd). The Place Pc (P(i) is added to the component net after application

of the corresponding creation (destroy) production, which also models the creation

(destroy) of part instances if a composition association exists.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o
C o m p o n e n t N e

(Cart)

C o m p o n e n t N e
(Customer)

O

C o m p o n e n t N e
(Customer)

o

O p‘
C o m p o n e n t N e

(Cart)

C o m p o n e n t N e ;
(Customer)

o)Po

(i d x , (i d y , x .d e q u e u e)
x 7 ̂ e m p t y
x . f i r s t . t y p e = “a d d lte r r ’
x . f i r s t . s e n d e r = i d a
x . f i r s t . r e c e i v e r = i d u

t_pass

(i d y , y) (i d y , y .e n q u e u e (x . f i r s t))

C o m p o n e n t N e
(Cart)

Figure 18: Transformation Rule for Passing Message Addltem

4.8 M odel Inconsistency

There is no standard definition of consistency. Multiple approaches has been pro­

posed to define consistency according to different purposes. Consistency can be de­

fined based on logic such that false information can be derived from multiple view­

points [146,146], while it can also be defined as the existence of a physical model

which implements multiple viewpoints of a system model. In our work, we view

inconsistency as properties or rules that system nets must satisfy. The consistency

problem of an individual diagram has been widely studied in UML community. Some

of their work such as analysis of class diagrams based on algebra [3] can be adopted

directly without difficulty. Therefore, in this paper we focus on the inter-consistency

between different viewpoints of a system model.

First, the syntactic inconsistencies between different diagrams are represented as

syntactic errors of derived component nets. There is no way to guarantee the syntactic

correctness of component nets and function nets because errors do exist due to the

inconsistency between UML diagrams. For example, if in statechart diagrams, a

variable in guards of transitions is neither an event parameter, an attribute of a class

nor a role name of an association that the class of the statechart diagram can access

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

directly or indirectly, then in the corresponding function net, there is a transition

whose condition refers to an undefined variable. In this example, we detect that

the attribute billlnfo referred to by the statechart diagram of class Customer does

not exist. It actually should be billinglnfo. Such kinds of inconsistencies are easy to

detect, even in UML itself. Therefore, in the rest of this chapter we assume all derived

Petri nets according to the proposed approach in the previous section are correct in

syntax.

Most of UML consistencies can be specified as safety properties that Petri nets

must satisfy during its lifetime. The safety properties are generally specified as linear

temporal logic formulae, in which a kind of predicates is introduced in the form

of P(t), which is true if place p contains a token t under the current marking M.

Therefore, a Petri net with the initial marking Mo satisfies a safety property <p if each

reachable marking from Mo satisfies ip. Violation of a safety property implies the

occurrence of an inconsistency. This kind of inconsistencies can be detected through

model checking. Several safety properties for a component net of a class are showed

in the following:

• The state machine diagram of a class should response to all messages/events

sent to it in activity diagrams or interaction diagrams. In particular class Cart,

such property is expressed as:

□ (Vid 6 ID , x 6 Cart.Bsystem '■ cart.P0bject{id, x) A x ^ undef)

since the function net becomes undefined whenever an unexpected message is

input according to the S IG ahlv-algebra B (see the Section 3.4). This property

is violated in this online shopping example since the class Cart cannot handle

the operation call message setShippingAddress from Customer. The original

operation the customer wants to invoke is actually setShippingAddr instead of

setShippingAddress.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Visibility checking - Other objects can only access its public roles, attributes

and operations. Such property for class Item is expressed as:

□ (Vg G Queue : Item.Pi(q) A first(q).sender = = first{q).receiver A

first(q).type —= OperationCall A

first{q).O perationNam e = = “setAssignedTo")

This means that only instances of Item can invoke the method setAssignedTo

since the corresponding association is a private one as showed in the Fig. 15(a).

This property is violated due to an invocation of this method from class Cart,

described in the activity diagram Addltem. By carefully reviewing these models,

it is better to change the visibility of assignedTo to public.

• Incomplete interaction - The interaction is not complete if a message is “stuck”

in the output queue of an instance in the execution of associated Petri nets.

This can occur if an interaction misses some link. This can be represented by a

safety property:

□ (Vg € Queue : (P0{q) A q ^ empty —> o(V V A f i r s t (?)6)̂)))
t€ (P 0)*V& *

where t* (p*) specifies the set of outgoing places (transitions) of t (p). This prop­

erty requires that any message in an output event pool is eventually dispatched

to input event pool of some instance.

Another way to detect inconsistency is to introduce “invalid” places. A token

in invalid places implies the occurrence of inconsistency. This approach is suit to

detect contradictions of pre- and post-conditions. In our approach pre- and post­

conditions of operations are represented as conditions of Petri net transitions (see

Fig. 17). Therefore if there is a operation call without satisfying the precondition, the

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

operation is not invoked in the model. However, such phenomena - the violation of the

precondition, generally indicating the occurrence of inconsistency, is hard to express

as properties. But it is easy to be detected by introducing additional places. For

example, in Fig. 16, after adding a new item to its content, the post-condition - the

total number of items in the cart should be no more than 5 - is tested in the transition

post and should be satisfied. To detect the violation of the post-condition, a new place

exception is added to the Petri net derived from activity diagram addltem. Then a

safety property in(->ea:ception(“.”)) is introduced to detect such inconsistencies.

Petri net analysis techniques can also be explored to detect UML inconsistency.

This approach is especially suit to check inconsistency between statechart diagrams,

activity diagrams and interaction diagrams. The semantics of an interaction is given

as a pair of set of traces. The two trace sets represent valid traces Tv and invalid

traces T*. A trace is a sequence of event occurrences. From a system net, we also can

extract a set of traces Ts of the system, which is compared with the pair of set of traces

Tv and Tj. The following potential results can be obtained from the comparison:

• Tv C Ts, which indicates that the interaction is totally supported by class

behaviors.

• Ts c Tv, which indicates that either behavior of some classes is incomplete

or the interaction diagram contains some unnecessary scenarios since there are

some traces in Tv not supported by class behaviors.

• T„ flTs = 0, which indicates the occurrence of inconsistency. By analyzing each

trace in Ts, we can locate the reason of the inconsistency.

• Ti fl Ts ^ 0, which indicates the occurrence of inconsistency. By analyzing each

trace in Ts or in the intersection, we can locate the reason of the inconsistency.

In the online shopping example, we first find tha t Tv fl Ts = 0. The only trace in Ts

indicates tha t the instance cart ends in the state ChangingShippingAddr while the

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

instance customer ends in the final state. By carefully simulate the trace, we find

that the cart in the state Addingltems receives an unexpected message setBillinglnfo,

which is just ignored since it cannot trigger any transition. Such case happens because

the customer first fills in shipping address and then billing information while the

cart records these information in the reverse order. This is the inconsistency we

are looking for. However, even after correcting such an inconsistency, we still find

that Ts fl Tj ^ 0, and the safety property n{-^exception(“.")) is violated in some

traces. Some traces in the intersection Ts fl indicates that a customer can checkout

without buying any goods. Other traces in the intersection describe the situation that

a customer can buy more than 5 items, which is confirmed by the violation of the

property □ (->exception^.")). The problem is due to the statechart diagrams of class

Customer, which forces customers to checkout even they buy nothing, and statechart

diagrams of class Cart, which should ignore or reject additional items.

4.9 Sum m ary

In this chapter, we adopted two-layer AHL-nets as the semantic domain for UML

notations. AHL-nets, weaving algebra into Petri nets seamlessly, is good at the de­

scription of ADTs and behaviors based on them. Two-layer AHL-nets (component

nets and function nets) exploring the idea of “net as token” [152,153], provides the

support for object-oriented concepts,and further separate the model of object be­

havior from the concern of communication mechanism. The transformation based

framework with two-layer AHL-nets as the corner stone, provides an approach to syn­

thesize different UML diagrams into a system net. More specifically, class diagrams

are formalized as algebraic class specifications; statechart diagrams are translated

into function nets based on associated class specifications. Transitions representing

activities in function nets are further refined by AHL-nets translated from associated

activity diagrams. Component nets are constructed through the integration of com­

munication mechanisms and functions nets, which are treated as a special kind of

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

token. Finally, component nets of classes are synthesized into a system net through

the application of a set of transformation rules, which are extracted from interac­

tion diagrams. Based on system nets, analysis techniques on Petri nets are explored

to detect different kinds of inconsistency. The framework is very flexible. We can

construct system net not only for a single scenario, but also for multiple scenarios,

which enables us to analyze the relationship between multiple interactions modeled

by interaction overview diagrams.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5

IMPLEMENTATION AND VERIFICATION OF SAM

ARCHITECTURE DESIGNS

5.1 Introduction

System nets obtained from the framework illustrated in Chapter 3 are a kind

of software architecture models, which can be easily specified by SAM (Software

Architecture Model) [160], a architecture description language proposed by Florida

International University. SAM is a general formal framework for specifying and ana­

lyzing software architectures. The foundation of SAM is a dual formalism combining

a Petri net model to define behavioral models and a temporal logic to specify prop­

erties.

However, a correct and valid software architecture at design level does not en­

sure the correctness of its implementation due to the error-prone characteristic of

the transformation from a model to its implementation. In order to validate the im­

plementation of a system net, two parts of works have to be done: realizing system

models, and verifying or validating the implementation. By constructing the im­

plementation automatically, we can control costs, improve productivity and quality.

Although automatic programming from a formal specification is in general impossi­

ble [13], generating the implementation from design models automatically is viable

since architectural design provides enough details.

In this chapter, we propose a methodology to validate system implementation by

combining runtime verification and aspect-oriented programming techniques. The

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

correctness of SAM contains several concerns [75], However here we only check if

behavioral models satisfy specified properties. To our knowledge, no similar work has

been done in other architecture description languages such as MetaH [158], Rapide

[100], Unicon [141] and Weaves [61] to verify and validate implementations. Fig. 19

shows the whole picture of SAM Parser - a tool developed to realize and validate

SAM designs automatically. The dashed lines indicate the work to be discussed in

this chapter. For the implementation of software architecture elements in SAM such

as components, connectors and ports, please refer [55].

design
levelimplementsimplements

implementation
level

complie

runtime
verification

compile

Java Code ■* Aspect! Code

Arch Java Code

Behavior Model

Petri nets

Property Specifications

Temporal Logic

Component/Connector

satisfy

SAM

Figure 19: SAM Parser Overview

The rest of this chapter is organized as follows: Section 2 gives a brief introduc­

tion of related works. Preliminary knowledge of SAM and the running example are

explained in section 3. Section 4 shows the methodology of SAM parser, followed by

Petri net implementation and runtime monitor code generation in Sections 5 and 6

respectively. Finally, we show the experiment result and summary.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 R elated Works

Currently, some architecture description languages (ADLs) supported the imple­

mentation of architectural design in a number of ways [106,141], but they cannot

enforce communication integrity [101,111] in the implementation that is necessary

to enable architectural reasoning about an implementation [2], By verifying or val­

idating implementations, we can increase our confidence on the correctness and the

quality of implementations. This is necessary since “while architectural analysis in

existing ADLs may reveal important architectural properties, those properties are not

guaranteed to hold in the implementations” [2],

Runtime verification has been proposed as a lightweight formal method applied

during the execution of programs. It can be viewed as a complement to traditional

methods of proving design model or programs correct before execution. Among the

existing works on runtime verification, MaC [97] is the closest to ours. MaC framework

needs several inputs from users: a monitoring script in PEDL that provides a mapping

between high-level events used in the requirement specification and low-level state

information, a requirement specification in MEDL that define properties in a special

interval logic, and a system implementation. The monitoring script is used to generate

a filter that is a set of program fragments keeping tract of monitored objects and

sending pertinent state information to the event recognizer, and an event recognizer

that detects an event from values of monitored variables received from the filter.

Runtime checker, which evaluates requirements over the current event trace received

from the event recognizer, is generated from the requirement specification. The MaC

framework is proposed to handle any java implementation. However, our work can be

viewed as a special case of MaC on software architecture descriptions, more specifically

SAM models. Therefore, we can obtain more benefits in terms of automation. In our

work, monitoring script and requirement specification is not necessary since they

are either implicit or explicit expressed in SAM models. Further more, the system

implementation of SAM models is also generated automatically.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Unlike MaC framework, runtime verification systems such as JP aX [69, 70] cur­

rently support linear temporal logic, and some analysis algorithms such as Eraser

algorithm [138] and deadlock detection algorithm are implemented in the runtime

checker too. Further more, JMPaX provides the ability to predict potential safety er­

rors from current successful executions. Currently, our work does not implement such

algorithms. However we extend the range of properties to be verified: a subset of first

order linear temporal logic formulae. Although this subset looks small, it actually

covers most of SAM properties such as response properties involving quantifiers.

Monitoring Oriented Programming (MOP) [33] shows a different way to implement

runtime monitoring. MOP is based on the belief that “specification and implementa­

tion should together form a system, ... and that they should interact with each other

by design rather than grafting monitoring requirements as an add-on to an existing

system to increase its safety” [32]. Therefore, requirement logics are inserted into

the critical places in the program via annotations by software developers. Actually

monitoring code is synthesized automatically from these annotations before compila­

tion and inserted into the appropriate places according to the defined configuration.

They support both in-line and out-line, both on-line and off-line monitoring. How­

ever, MOP requires that software developers have a deep understanding of the code

to catch all “critical” places manually, which is the issue we want to avoid.

Besides runtime verification, there are several other analysis techniques adopted on

system implementations to produce a more reliable and error-free software system.

Model checking has been applied to check software systems written in Java, C and

C + + [12,30,68]. Runtime verification focuses on the current program execution,

while model checking examines all possible pathes. Unlike testing focusing on the re­

lationship between inputs and outputs, runtime verification underlies the relationship

between system implementations and system properties. Therefore, runtime verifi­

cation is a complement to these techniques, which can also be adopted in our work

without difficulty.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.3 Software A rchitecture M odel

5.3.1 SAM

SAM is an architectural description model based on Petri nets, which are well-

suited for modeling distributed systems. SAM has dual formalisms underlying -

Petri nets and Temporal logic. Petri nets are used to describe behavioral models of

components and connectors while temporal logic is used to specify system properties

of components and connectors.

SAM architecture model is hierarchically defined as follows. A set of compositions

C — {Ci, C ‘2 , ..., C k } represents different design levels or subsystems. A set of com­

ponent Cmi and connectors CHi are specified within each composition Ci as well as a

set of composition constraints CSi, e.g. Ci = {Cmi,C ni,C Si}. In addition, each com­

ponent or connector is composed of two elements, a behavioral model and a property

specification, e.g. Cy = (S ij,B ij). Each behavioral model is described by a PrT net,

while a property specification by a temporal logical formula. The atomic proposition

used in the first order temporal logic formula is the ports of each component or con­

nector. Thus each behavioral model can be connected with its property specification.

A component Cmi or a connector Cni can be refined to a low level composition Cj by

a mapping relation h, e.g. h(Cmi) or h(Cmi) — Ci. Fig. 20 shows a graphical view of

a simple SAM architecture model.

5.3.2 A n Exam ple o f SAM

Our running example is a coffee machine from [155]. Fig. 21 shows a simplified SAM

model of coffee machine. In SAM, there should have a component CoffeeMachine, a

composition CoffeeMachine, and a hierarchical mapping from the component to the

composition. However, in order to make the figure more straightforward, we integrate

these three parts and still call it composition CoffeeMachine. Thus, the composition

CoffeeMachine has ports that actually belongs to component CoffeeMachine. The

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

/ Environmental
\ Constraint (Cl) Component

- 5

Composition
Constraint (CS)

Figure 20: A SAM Architecture Model

connection between a port of the composition and a port of its subcomponent is

called glue, which is actually defined in the hierarchical mapping.

From this figure, we can see the coffee machine itself is modeled as a composition

CoffeeMachine, which has three sub components: CMInterface, CoinHandler, and

Brewing Facility, and three connectors: CH^CMI, CH-BF, and BF-CMI. Behavioral

models of these components are demonstrated in Fig. 22. The component CMInter­

face acts as the interface of coffee machine to customers. It receives instructions from

a customer and transfers them to other parts of the coffee machine. The functionality

of the component CoinHandler is to make sure that customers have enough money

for the specified coffee before the coffee machine serves the customer. The component

BrewFacility checks the storage of specified coffee and serves the customer if there is

enough coffee. The connectors in composition CoffeeMachine are very simple: They

just transfer messages between a pair of ports in different components.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

money_cm~XJ~
money_cmi

c-
change_cm

-C change_cmi

- O -----------------------C 7

CMInterface

coffeetype_cm
V-------------

coffeetype_cmi

ready _enjoy_cmi

request_cmi

tl
c

request_ch

coin_back_cmi

*2 CH_CMI

ready_cmi

t5
BF_CM I

13

ready_enjoy_c
D-----------

— - - - ^

bf
BrewingFacility

coffe
CoinHandler

C

j
;_reqest_ch ^coffee_request.

n_ ru

coffee_serve_cmi

t6
]

coffee_serve_bf

pay_retum_ch ^ pay_return_bf

CH BF

C offeeM achine

Figure 21: SAM Model of Coffee Machine

Property specifications for each component/ connector in SAM are defined by LTL

formulae. Some heuristic rules of how to specify temporal properties are given in [75].

The following is a property of component CoffeeMachine called Request:

((money_cmi(85) A cof feetype.cm i(2)) — ►

O (change_crra(85) V (change.cmi(10) A ready.enjoy-cmi(1)))) ^ ^

In the above formula, atomic predicates are evaluated by checking if a port contains

specified messages. For example, atomic predicate m oney.cm (85) is true if the port

money.cm of component CoffeeMachine has a message 85. Since in SAM, a port refers

to a unique place with the same name in the behavioral model of the component, the

atomic predicate also means the place money.cm contains a token 85. Therefore,

the above formula specifies the situation that when a user inserts 85 cents to the

coffee machine and chooses coffee type 2, the coffee machine either returns 85 cents

in case there is not enough coffee, or gives the user 10 cents change and a cup of

coffee. Properties can also be expressed as past time linear temporal logic formulae.

Formula 2 is the property RequireMoney in past time linear temporal logic, where

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

request_ch coffee_request_chenough

$ > z

<x,y><y,z>

<x,y>

<y,z> <y,z>
<y,z>

X < z
<xyy> <x,y>not_enough

nocftange
changecoin_back_ch

true truereturn
false

<x,y>

pay_retum_ch

(a) C om ponent CoinH andler

= {request.ch i->< in t , in t > , price, >-»< int, in t > ,
cof fee.request.ch i—> int, coin-back h-> int,
sane r->< int, in t > ,pay.retu rn .ch i-* boolean}

Mo = {request-ch { } ,price i-> { < 1,50 > , < 2 , 75 >
< 3,100 > } , co f fee-request .ch >-> {} , coin-back-ch
>-» { } ,s a v e i-» {},p a y .re tu rn -ch r-* {}}

r = true A z > 1
A « ' = z — 1

<y,z>

coffee._scrve_bf

<y,z’>

ready_bA.— .ULstorage

lestlSf T r_requesCi pay_i

r <y,z>

r = true A z = 0

A z = z
alert

= { co f fee-requestJbf >—► int, ready -b f i-+ boolean, storage i->
< in t, in t > , pay .re tu rn .b f i-» boolean, co f fe e .se rv e .b f >-+ int}

Mo = {c o f f ee.request.b f k-> {} ,re a d y -b f h-> { } , storage h-»
{ < 1,50 > ,< 2,50 > ,< 3,50 >},pay-re tu rn Jbf >-> {},
co f fe e se rv e J b f >—> {}}

(b) C om ponent Brew ingFacility

coffeetype_cmi

take_cup ready_cmirequest_cmi

money_cmi

O H -K j
change_cmi £oin_back_cmi

coffee serve cinis

ready_enjoy_cmt

= {m oney-cm i i-> in t,requ est-cm i >->< in t, in t > ,
sig h-» boolean, ready-cm i h-» boolean,
co f feetype-cm i i—> int, co f fe e se rv e -c m i i—> int,
coinJback-cmi i—> in t, change-cmi int,
ready-enjoy-cm i i-> int}

M q = {m oney-cm i i—> 75, co f feetyp e .cm i 2, sig i-> {},
ready.cm i >->{}, request-cm i i—> {},

co ffee se rve_ cm i {}, ready .en jo y .cm i r-> {},
coin.back.cmi i-+ {}, change .cm i ►-+{}}

(c) C om ponent CM Interface

Figure 22: Behavior of Subcomponents in CoffeeMachine

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

{*) and [*] are the past time operators corresponding to future time operators O and

□ in future time linear temporal logic. This formula says there exists an integer m

such that whenever a user was served with a cup of coffee by the coffee machine, then

the user must have inserted m cents before where m > = 50 if the user chooses coffee

type 1, m > = 75 if the user chooses coffee type 2, or m > = 100 if the user chooses

coffee type 3.

3m G Sort(money-cmi), [*\(ready-enjoy.cmi(1) — >

(*)(money-cmi(m) A ((cof feetype-cm i(1) A m >— 50)V ^)

(cof feetypejcm i(2) A m > = 75) V (cof feetypejcm i(3) A m > = 100))))

5.4 M ethodology

Fig. 23 shows the architecture of the methodology. Both SAM models and Petri

nets are specified in an XML-based interchange format. For SAM models, a SAM

markup language is defined. Petri Net Markup Language (PNML) [21] is used to

specify Petri nets. By allowing the definition of Petri net types, PNML supports

different versions of Petri nets, such as High Level Petri Nets, Timed Petri Nets, and

etc.. Although both SAM and PNML can utilize or specify different versions of Petri

nets, here only High Level Petri nets [121] are discussed.

From this architecture, we can see that our work consists of two parts: generating

code to execute SAM and Petri nets, and generating monitoring code for run-time

verification.

In order to generate code to execute SAM and Petri nets, two sets of classes called

templates are predefined to automate the code generation. The template for Petri

nets specifies structure and dynamic semantics of high level Petri nets, while the

template for SAM describes basic behavior of SAM elements such as components and

compositions. It is hard to generate code automatically given a Petri net due to the

complexity of sorts, guard conditions of transition and arc labels [98], Although we

cannot achieve this goal for Petri nets in general, we can realize it if the specifications

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SAM Parser

SAM in

Petri net code Code to implement
generator Petri nets

PN
.Template

SAM
.Template

SA M code
generator

formulae

Code to implement
SAM

Code for runtime
verification

logic
server

monitoring code

monitoring code

formulae

logic
engine

Figure 23: Framework of SAM Parser

of Petri nets satisfies certain restrictions. In our work, we generate Java code to

implement Petri nets and ArchJava [2] code to implement SAM since ArchJava is an

extension to Java that seamlessly unifies software architecture with implementation

and use a type system to ensure that the implementation conforms to architectural

constraints.

System requirements are described by temporal logic formulae as a part of SAM

components and connectors. For each formula, the monitoring code for runtime veri­

fication is generated by logic engine. In order to make the choice of logic independent

from SAM parser, a middleware called logic server is inserted between SAM parser

and logic engine. In the architecture, a protocol between the SAM Parser and the

logic server is defined. Therefore, the choice of logic engine is independent from SAM

parser. We use Maude [102] in the current implementation.

The final step is to integrate monitoring code with functionality code. The main

concern during the integration is to make sure they can be weaved while they have

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

clear boundary and do not affect each other’s execution. To the best of our knowledge,

aspect-oriented programming [63,113,122] is the best for our needs since it enables

clean modularization of crosscutting concerns, such as error checking and handling,

synchronization, context-sensitive behavior, performance optimizations, monitoring

and logging, debugging support, and multi-object protocols. For each component and

connector with a non-empty property specification, an aspect [62], defining methods

and time to invoke these methods, is generated by integrating monitoring code with

time information. In our case, an aspect describes methods to check if properties

are satisfied, and defines the appropriate time to invoke these m ethods- whenever

a port sends or receives messages, i.e. a token is added or removed from a place

corresponding to a port.

5.5 Im plem entation o f Petri N ets

A behavioral model of a component/connector in SAM is specified by a high level

Petri net. Therefore, the implementation of Petri nets is necessary in order to im­

plement SAM automatically. Although lots of works have been done on Petri nets

implementation, few of them supports the object-oriented code generation from Petri

nets directly.

In order to generate Java code from Petri nets, we predefine a set of Java classes

called templates, which specify the structure and dynamic semantics of high level

Petri nets. For example, the basic elements of Petri nets such as places, arcs, transi­

tions, guards, inscriptions are defined by individual classes. We also provide dynamic

semantics of Petri nets in Java classes Net and Transition. In other words, we provide

a general but maybe not efficient approach to check if a transition is enabled and to

be fired.

In our work, we construct a class as a child of templates for each net, place, tran­

sition, arc, inscription, initial marking, and guard. The reason for this is to make it

easier to understand and maintain. For example, the user can provide a more efficient

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

way to check the enableness of a transition and the way to fire it by replacing methods

of corresponding classes without any side effects on other transitions. The execution

of generated code is non-deterministic, i.e. we choose an enabled transition and a

valid assignment randomly to fire.

It is hard to generate code automatically given a Petri net due to the complexity of

sorts, guard conditions of transition and arc labels [98]. Although we cannot achieve

this goal for Petri nets in general, we can achieve it if the specifications of Petri nets

satisfy the following restrictions:

• The needed sorts of Petri nets either are Java primitive types such as int, long,

and boolean etc., or are defined as a Java classes including its operators, or are

a product of already defined sorts.

• The variables occurred in the label of an incoming arc of a transition have the

same type as the token sort of the incoming place.

• The variables occurred in the label of an outgoing arc of a transition are defined

in the label of an incoming arc of the same transition. In other words, only the

label of an incoming arc can define variables.

• If a variable is a product type such as int x int and this product type is generated

by Petri net code generator, its field is referred in the form of “.field?” , where ?

is the field sequence number starting at 1. For example, £ is a variable of type

in tx in t, then x .fie ld l and x.fie ld2 refer to first and second field respectively.

Fig. 24(a) shows a Petri net satisfying the restrictions. The Petri net in Fig. 24(b)

violates the restrictions because types of variables x l , and x2 are not compatible

with the type of sort assigned to the corresponding place. The Petri net in Fig.

24(c) violates the restrictions because of variable declaration in an outgoing arc.

Therefore, if we choose the specification in Fig. 24(b) and 24(c), manual correction

on the generated code is necessary.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

•) x .fie ld l= x .fie ld .2+ l]--------
< x l,x 2 >

x l= x 2 + l
< x l,x 2 >o

(a) Petri net satisfy ing restrictions (b) P etri net v io la tin g restrictions

o x x.fieldl=x.field.2+:____H
A x = y__________ o

(c) P etri net v io la tin g restrictions

Figure 24: Petri nets satisfying or violating guidance

The SAM Parser can still produce code successfully if the specification of a Petri

net does not follow the restrictions. However, the generated code is inexecutable and

will produce parse errors before the manual correction.

5.6 Im plem entation o f R un-tim e Verification

The purpose of runtime verification [132-135] is to monitor, analyze and guide the

execution of programs. Traditionally the correctness of a model is verified at design

level, runtime verification provides additional correctness assurance at implementa­

tion level.

Specific to our case, we need to monitor property specifications for each compo­

nent/connector during model execution. These property specifications are described

as temporal logic formulae. Although SAM can support different temporal logics,

such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL), here we

only deal with future time LTL and past time LTL. In order to validate SAM during

execution, monitoring code has to be generated for each formula, which is done by

the logic server.

By inserting the logic server between the SAM parser and the logic engine, the

choice of logic engine is independent from SAM parser. In other words, we can

replace one logic with another without any modifications to SAM parser or the code

generated by the SAM parser. Currently we choose Maude [102] as our logic engine,

and the algorithms to generate code to monitor future time LTL and past time LTL

can be found at [131].

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

There are three different results returned from the execution of the monitoring code

of a formula: true, false and neither true nor false called unsure. True means the

formula is satisfied while false means the formula is violated. Generally speaking, the

evaluation of a safety property tells us if it is violated; the evaluation of a liveness

property tells us if it is satisfied. Unsure is an intermediate result, from which we

cannot tell if the formula holds or fails. The intermediate result can be returned

by the monitoring code of any type of formulae. If the monitoring code of a safety

property returns unsure, it means the safety property does not fail during the previous

execution. For a liveness property, unsure generally means it is not true during the

previous execution. The following is the monitoring code for Formula 1 in section

5.3.2.

private boolean Com_CMInterface$C.F_Request_hasResu.lt = false;
private boolean Com_CMInterface$C.F_Request_result = false;
private int Com_CMInterface$C.F_Request_$state = 1;

public void F_Request(Com_CMInterface$C thisObject) {
if (thisObject.F_Request_hasResult) return;

boolean Pmoney = thisObject.isMessageContained("money_cmi","85");
boolean Pcoffeetype=thisObject.isMessageContained("coffeetype_cmi","2");
boolean PgetCoffee=thisObject.isMessageContained("ready_enjoy_cmi","1");
boolean PmoneyBack = thisObject.isMessageContained("change_cmi","85");
boolean PgetChange = thisObject.isMessageContained("change_cmi","10");

switch(thisObject.F_Request_$state) {
case 1: thisObject.F_Request_$state = PmoneyBack?-!:Pcoffeetype?Pmoney?

PgetChange ? PgetCoffee ?-l:2: PgetCoffee?3:4 :-l:-l ;
break ;

case 2: thisObject,F_Request_$state = PmoneyBack ?—1: PgetCoffee ?—1:2;
break ;

case 3: thisObject.F_Request_$state = PgetChange ?—1: PmoneyBack ? -1:3
break ;

case 4: thisObject.F_Request_$state = PmoneyBack ? -1 : PgetChange ?
PgetCoffee ? -1 : 2 : PgetCoffee ? 3 : 4 ;
break ;

>

if (thisObject.F_Request_$state == -2)
// The Formula fails : false

if (thisObject.F_Request_$state == -1)
// The Formula holds : false

//Currently, cannot judge the correctness of the formula : unsure

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Although we can generate monitoring code for future and past time LTL, it does

not fully satisfy our needs for verifying properties such as first order temporal logic

formulae during runtime. First order temporal logic formulae are hard to evaluate

against a design model since the domains of quantification variables are generally

infinite. However, during the program execution, the number of potential values as­

signed to a quantified variable is finite, which makes it possible to verify first order

temporal logic formulae during runtime by transferring them to temporal logic for­

mulae without quantifications. Due to the complexity of first order temporal logic

formulae, we only focus on a subset of them from which monitoring code can be

generated automatically by the logic server.

The subset of first order temporal logic formulae we can handle currently has

following restrictions:

• Quantification variables are declared before any temporal operators and logic

operators. For example, the formula Vx G in t(n (p(x))) is in the subset, while

the formula n(Vx G in t(p (x))) is not.

• Assignments to all quantification variables occur at the same time slot, and

no predicate is evaluated before this time slot. For example, the formula

Vx G inf, By G in t(p (x) A q(y) — > 0 (r(y))) and the formula Vx G in t,3 y G

int(p(x) — > r(y)) are in the subset, while the formula Vx G in t,3 y G

in t(p(x) — > O(r(y))) is not since the assignment to y occurs later than the

assignment to x.

At first it seems the subset is too small and does not provide enough support for

applications. However, due to the characteristics of property specifications on Petri

nets and SAM - most of first order temporal logic formulae are response properties

[75], the subset can adequately cover the most cases of property specifications in

SAM. The following is the core part of code for Formula 2 .

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

final class F_RequireMoney_Helper {
public int
public boolean
public boolean
public boolean
public boolean

hasSuccessfulCondition;
isSuccessful = false;
hasFailureCondition;
isFailure = false;

public boolean[] F_RequireMoney_$pre = new boolean[2];
public boolean[] F_RequireMoney_$now = new boolean[2];

private Vector Com_CMInterface$C.F_RequireMoney_mList = new Vector(5);
private Vector Com_CMInterface$C.F_RequireMoney_classHelperList = new Vector(5);
private boolean Com_CMInterface$C.F_RequireMoney_hasResult = false;
private boolean Com_CMInterface$C.F_RequireMoney_result = false;

public void F_RequireMoney(Com_CMInterface$C thisObject) {
if (thisObject,F_RequireMoney_hasResult) return;
Vector mList = thisObject.getMessageFromPort("money_cmi");
int m;
for (int i=0; i<mList.s i z e O ; i++)

thisObject.addF_RequireMoney_mList(thisObject,
((Integer)mList.elementAt(i)).intValue());

thisObject.updateF_RequireMoney_classHelperList(thisObject);

boolean truthValue = true, hasResult = false;
F_RequireMoney_Helper actElement = null;
for(int i0=0; iO<thisObject.F_RequireMoney_mList.sizeO; i0++) {

m = ((Integer)thisObject.F_RequireMoney_mList.elementAt(iO)).intValueO;
Vector helperClassList = thisObject.F_RequireMoney_classHelperList;
int j =0;
for (j=0; j<helperClassList.sizeO; j++) {

actElement = (F_RequireMoney_Helper)helperClassList.elementAt(j);
if((m == actElement.m)) break;

>
if (j == helperClassList.sizeO) continue;
F_RequireMoney$(thisObject, actElement);
truthValue = true; hasResult = false;
if (actElement.hasFailureCondition)

if (actElement.isFailure) {
truthValue = false; hasResult = true;

>
if (actElement.hasSuccessfulCondition)

if (actElement.isSuccessful) {
truthValue = true; hasResult = true;

>
if (truthValue) break;

>
if (hasResult) {

if(truthValue) The Formula Holds;
else The Formula Fails;

} else
Currently, cannot evaluate the formula;

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

As we know, a component/connector in SAM has a property specification, which

consists of multiple linear temporal logic formulae (either future time LTL or past

time LTL). After gathering monitoring code for each formula from logic server, the

SAM parser constructs an aspect for each component/connector. In general, aspects

consist of an association of other program entities, ordinary variables and methods,

pointcut definitions (interesting points in the execution of a program), inter-type

declarations, and advice that declares a time (before, after or around pointcut) to

take actions. In the aspect, monitoring code for each formula is invoked to evaluate

the formula whenever a message is received from or sent to a port. The following

code is an aspect for property specification of component CMInterface.

public aspect Com_CMInterfaceMonitorAspect {
pointcut MonitorPoint(): (call(void addMessage(String, Object)) ||

call(void removeMessage(String, Object)));
after(Com_CMInterface$C thisObject) : target(thisObject) kk

MonitorPoint() {
F_Request(thisObject);
F_RequireMoney(thisObject);

>

variables and methods generated for each property

pointcut ConstructorPointO: (!within(SAM_Component) kk
execution(new(..)));

after(Com_CMInterface$C thisObject) :
target(thisObject) && ConstructorPointO {

//initialize helper variables for each property if necessary
>

>

Although we hope we can check any type of formulae during runtime, there are

limitations for runtime verification. In other words, there are some type of formulae

that we cannot tell if they hold or fail during runtime. □ (p — > O (q)) is such

a formula. We cannot tell if the formula holds since there is an always temporal

operator, which means the formula should be monitored forever. However, we also

cannot tell if the formula fails because of temporal operator future, which means you

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

cannot know the formula fails until the program ends - but at that time there is no

monitoring any more.

Similar to model checking, we need a counter example for analysis purpose if a

formula fails. To produce a counter example, we record a trace of program execution

to a log. The trace from the start to the current spot when the formula fails forms

the counter example.

5.7 E xperim ental R esults

We use the coffee machine as the running example. Although it is a little small and

simple, all aspects of SAM and Petri nets are covered. For the property specifications,

Formulae 1 and 2 are defined in the property specification of component CMInterface.

As a result of executing SAM parser, lots of files are generated to implement Petri

nets and SAM. Table 4 shows the distribution of generated files, which are the imple­

mentations of SAM structure, component/connector behavior, and monitoring codes.

From this table, we can see even for this simple example, more than 200 Java classes

are generated to implement Petri nets. The reason for this is due to the most impor­

tant principle for the SAM parser: The generated code is kept simple to understanding

and modifying if necessary. In order to implement SAM, one ArchJava file is gener­

ated for each component, connector or composition. A component/connector class in

ArchJava introduces several Java classes, which are decided by the number of ports

contained by the element. In our example, only the property specification of com­

ponent CMInterface is not empty. Therefore, only one aspect is generated, which

verifies formulae 1 and 2 . One thing we have to point out is tha t composition Cof-

feeMachine has no behavioral model. Its behavior is decided by its sub-components

and sub-connectors.

A log file is used to record the results of execution of generated code including

implementation of Petri nets and SAM, and runtime verification. Each step taken by

a Petri net is record in the following form:

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Tab e 4: Generated Files for Coffee Machine

of Generated
Files

For P N Im ple­
m entation

For SAM Im ­
plem entation

For Hun-
tim e Verifi­
cation

CoffeeM achine 0 1 0
CM Interface 11 1 1
CoinHandler 26 1 0
BrewingFacility 14 1 0
CH_CMI 5 1 0
CH_BF 5 1 0
BF_CM I 5 1 0
Tem plates 14 7 0
Sort 1 0 -
Total 81 14 1

<incoming places.{marking}>
 component/connector.transition----->

<outgoing places.{marking}>

For example, the following step means transition input is fired. As a result of the

firing, token 85 in place money-cmi, and token 2 in place coffeetype.cmi are consumed,

and token < 85, 2 > and 1 are added to place request-cmi and place sig respectively.

<money_cmi={85},coffeetype_cmi={2}>
 Transition iutput(input) >

<request_cmi={<85,2>}, sig={l}>

For the runtime verification, we record the value of each predicate, and the result

of the current evaluation. The following is an example of the evaluation of formula 1

named F-Request.

Formula CMInterface.F_Request:

Pmoney= false
Pcoffeetype= false
PgetCoffee= true

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PmoneyBack= false

PgetChange= false

Cannot judge Formula F_Request currently!

In the above output, predicates Pmoney, PCoffeetype, PgetCoffee, Pmoney­

Back and PgetChange refer to money-cmi(85), coffeetype-cmi(2), ready-enjoy.crni(1),

change-cmi(85) and change„cmi(10). From the summary of runtime verification, we

can see we cannot judge the correctness of formula 1 and formula 2 .

We know that the original property expressed by the formula 1 is true. After

carefully checking the log that records the trace of program, we found that the error

was due to the sub-formula PgetChange A P g e tC o ffee since the program could not

guarantee that place change-cmi had token 85 and place ready_enjoy-crm had token

1 at the same state. Therefore, during runtime verification, we could not assert that

the formula was true. On the other hand, due to the O operator, the monitoring code

could not return false for the verification of this formula. That is why the verification

of the formula 1 returned unsure result. Actually, the formula 1 should be corrected

as following:

{{money jcmi{85) A cof feetype-cm i{2)) — ►
C3 \

(<>change-cmi(85) V (Ochange-cmi(10) A C ready.enjoyjcm i(1)))) '

For the unsure result of formula 2 , at first it seemed very strange since the purpose

of runtime verification was to check if formulae were satisfied or not. However this

result is correct because formula 2 is a safety property, which means it has to be true

in every state. The unsure result for a safety property tells us tha t the property did

not fail before the current checking point. In this case, it means the formula 2 was

true during the lifetime of the coffee machine.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.8 Sum m ary

Validation and verification of systems at model level is relatively mature, and lots

of tools have been developed to support model level verification. However, at imple­

mentation level, few work has been done to validate systems. In this chapter, besides

generating code automatically to implement SAM and Petri nets, we combine runtime

verification and aspect-oriented programming to support the validation of system at

implementation level.

Run-time verification has been proposed as a lightweight formal method applied

during the execution of programs. It can be viewed as a complement to traditional

methods of proving design model or programs correct before execution. Aspect-

oriented software engineering [63,113,122] and aspect-oriented programming [49] were

proposed to separate concerns during design and implementation. Aspect-Oriented

Programming complements 0 0 programming by allowing the developer to dynam­

ically modify the static 0 0 model to create a system that can grow to meet new

requirements. In other words, it allows us to dynamically modify models or imple­

mentations to include code required for secondary requirements (in our case, it is

runtime verification) without modifying the original code. By combining runtime

verification and aspect-oriented programming to verify and validate models at imple­

mentation level, we can obtain the following benefits:

• The procedure from design models to implementations is generally informal,

therefore error-prone. Run-time verification provides a means to validate the

procedure indirectly.

• Sometimes, a model cannot be validated or verified at design level. For example,

model checking is generally applied to systems with finite states. Unfortunately,

the state space of Petri nets can be very huge in many cases. Although different

approaches have been proposed to handle state space explosion problem, none

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of them has solved the problem. In this case, run-time verification is necessary

to increase our confidence on the model.

• Run-time verification can provide a counter example for unexpected exceptions

of implementations.

• Run-time verification provides a mechanism to handle exceptions of implemen­

tations that are not detected during development.

• By adopting aspect-oriented programming, the code for runtime verification

does not affect the functionalities of the code that realizes design models.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6

CONCLUSION

6.1 Overview

The purpose of this research was to verify and validate UML designs by formal­

izing and transforming UML diagrams into corresponding parts in the proposed

component-based framework, and to develop a tool to realize UML designs auto­

matically for dependability assurance by weaving runtime verification code. This

investigation focused on:

1. formal component-based framework in which components are modeled by two-

layer algebraic high-level nets and interactions are captured by transformation

rules. System models can be constructed by applying transformation rules to

component models according to system specifications.

2. UML designs formalization and transformation process that describes how to

formalize class diagrams, state machine diagrams, and activity diagrams, and

how to extract transformation rules from interaction diagrams.

3. Development of analysis techniques for system models constructed in the frame­

work. In order to explore model checking technique, We developed a set of

predicates suitable to describe properties of two-layer algebraic high-level nets.

4. Automated realization of UML designs through system model constructed in the

framework, which also weaves into the implementation runtime verification code

generated from system properties automatically for dependability assurance.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.2 Contributions

As stated at the outset, the primary objective of this research was to verify and

validate UML designs and provide an approach to realize them for dependability

assurance. This section summarizes the contributions and benefits listed in Chapter

1, Table 1.

The primary contribution was the development of a formal component-based frame­

work to model systems, which was described in Chapter 3. The major benefit of

the framework is to separate component modeling from interaction modeling, which

makes it so flexible that different sub-system, even system models can be constructed

by needs according to system specification. Such advantage was accomplished by

integrating various theories and techniques, i.e. algebraic specification, algebraic

high-level net, category theory, and graph rewriting. More specifically, components

and their interactions are modeled by Petri nets and transformation rules, respec­

tively. The (sub) system models can be constructed by applying transformation rules

to components according to system specifications.

The next contribution was the approach of transforming UML designs into the

framework, which was outlined in Chapter 4. This approach consists of several steps:

First, formalizing class diagrams by algebraic specifications. Second, using algebraic

specifications to obtain Petri net models from state machine diagrams and activ­

ity diagrams. Finally, transformation rules are extracted from interaction diagrams.

As a by-product, we provide a precise semantics for class diagrams, state machine

diagrams, and activity diagrams.

The following contribution was the development of a process to integrate UML

designs into a individual but complete system model by adopting the framework as

the semantic domain for UML designs. Various diagrams in UML designs specify

different aspects of the system to be built. However, it is hard to obtain a complete

overview of the system. The transformation of UML designs into the framework

provides one way to solve this problem.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In order to validate and verify UML designs, we adopted model checking and other

Petri net analysis techniques to check if a system model satisfies given properties.

In order to better utilize model checking tools (Currently Maude), we extended the

traditional definition of atomic predicates to fit two-layer algebraic high-level nets

better.

The final contribution is the automated implementation of system SAM models

described in Chapter 5. Furthermore, in order to provide runtime verification for

dependability assurance, this tool can also translate system properties into pieces of

monitor code, which are weaved into functionality code through aspect-oriented pro­

gramming. Therefore, system properties can be checked during program execution.

6.3 Future Work

In the process of this investigation, several areas of research were either identified

as natural extensions of this dissertation, or needed further exploration for improve­

ments. These areas are summarized below.

• There are two kinds of properties to be verified in the framework: component

behavior property and communication protocol property. Verification of com­

ponent behavior property generally involves one component, while verification

of communication protocol property involves several even the whole system

nets, which may be quite large in some situations. To solve this problem, we

are investigating several compositional model checking techniques. Among the

various proposed automated compositional verification techniques in temporal

logic [19,35,64] and in Petri nets [85,154], we found tha t the interface mod­

ule technique [19] and the 10 graph technique [154] are most relevant to our

research. We are currently focusing on how to adapt these compositional veri­

fication technique to analyze system nets obtained through our framework. We

are also studying compositional temporal logic proving techniques developed

in [1],

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• In this investigation, inconsistency rules and system properties were given either

as plain natural text for general case or as linear temporal logic formula for a

specific system. However, the plain natural text is always ambiguous, and the

translation from them to formal definition of properties for a specific system

model is always a manual process and error-prone. Further investigation is

necessary to define inconsistency rules and system properties in UML designs.

Object Constraint Language (OCL) coming with UML maybe a good candidate.

• Although an example was shown in each chapter to illustrate the framework,

the transformation from UML designs to the framework, and the automated

realization of SAM models with runtime verification code, it would be better if

this process is applied to a real application covering each steps in the process,

i.e. from UML designs to the realization.

• The major motivation of the framework is to verify and validate UML designs.

However, I believe this framework can also be explored in other areas for system

modeling, such as adaptive software architecture, and agent-oriented software

engineering.

• In this research, all analysis work was accomplished based on Petri nets. How­

ever, it would be more interesting if we can check the compatibility directly

between system models (in the form of Petri nets modeling one or more sce­

nario) and interaction diagrams. Although some work has been done on this

area, but they more focused on a simple interaction diagrams without con­

sidering complicated artifacts such as iterating, parallel, and non-deterministic

execution.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF REFERENCES

[1] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems, 15(1):T3—132, 1993.

[2] J. Aldrich, C. Chambers, and D. Notkin. ArchJava: Connecting Software Ar­
chitecture to Implementation. In International Conference on Software Engi­
neering, Orlando, FL, USA, May 2002.

[3] P. Andre, A. Romanczuk, et al. An Algebraic View of UML Class Diagrams.
In H.Sahraoui and C. Dony, editors, Acte de la conference LM O ’2000, pages
261-276, 2000.

[4] M. Andries, G. Engels, et al. Graph Transformation for Specification and Pro­
gramming. Technical Report 7/96, Universitat Bremen, 1996.

[5] J. Araujo and A. Moreira. Specifying the Behaviour of UML Collaborations
Using Object-Z. In Americas Conference on Information, Systems (AMCIS),
2000 .

[6] F. Arbab. Abstract Behavior Types: A Foundation Model for Components and
Their Composition. Science of Computer Programming, 55(l-3):3-52, 2005.

[7] D. B. Aredo. Formalizing UML Class Diagrams in PVS. In Proceedings of
Workshop on Rigorous Modeling and Analysis with the UML: Challenges and
Limitations at OOPSLA ’99, Denver, Colorado, USA, 1999.

[8] D. B. Aredo. Semantics of UML statecharts in PVS. In Proceeding of 12th
Nordic Workshop on Programming Theory, Bergen, Norway, 2000.

[9] D. B. Aredo. A Framework for Semantics of UML Sequence Diagrams in PVS.
Journal of Universal Computer Science, pages 674-697, 2002.

[10] D. B. Aredo, I. TYaore, and K. Stolen. Towards a formalization of UML class
structure in PVS. Technical Report 272, Department of Informatics, University
of Oslo, 1999.

[11] P. Baldan, A. Corradini, et al. Compositional Semantics for Open Petri Nets
based on Deterministic Processes. Mathematical Structures in Computer Sci­
ence, 15(1), 2005.

[12] T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Abstractions
for Model Checking C Programs. In Proceedings of TACAS’01: Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science, pages 268-283, 2001.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[13] R. Balzer. A 15 year perspective on automatic programming. IEEE Transac­
tions on Software Engineering, 11 (11): 1257—1268, 1985.

[14] R. Balzer. Tolerating Inconsistency. In Proceedings of 13th International Con­
ference on Software Engineering, pages 158-165. IEEE Computer Society/ACM
Press, 1991.

[15] L. Baresi and M. Pezze. On Formalizing UML with High-Level Petri Nets.
In Proceedings of Concurrent Object-Oriented Programming and Petri Nets,
volume 2001 of Lecture Notes in Computer Science, pages 276-304, 2001.

[16] J. P. Barros and L. Gomes. Actions as Activities and Activities as Petri Nets. In
CSDUML’2003 - Workshop on Critical Systems Development with UML within
UML’2003, 2003.

[17] J. P. Barros and L. Gomes. A Unidirectional Transition Fusion for Coloured
Petri Nets and its Implementation for the CPNTools. In Proceedings of the 5th
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, pages 199-218, 2004.

[18] T. Basten. In Terms of Nets : System Design with Petri Nets and Process
Algebra. PhD thesis, Department of Computing Science, Eindhoven University
of Technology, Eindhoven, The Netherlands, 1998.

[19] S. Berezin, S. Campos, and E. M. Clarke. Compositional Reasoning in Model
Checking. Lecture Notes in Computer Science, 1536:81-102, 1998.

[20] S. Bernardi, S. Donatelli, and J. Merseguer. From UML Sequence Diagrams
and Statecharts to Analysable Petri Net Models. In WOSP ’02: Proceedings
of the 3rd international workshop on Software and performance, pages 35-45,
2002 .

[21] J. Billington, S. Christensen, et al. The Petri Net Markup Language: Concepts,
Technology, and Tools. In Proceedings of the 2 4 th International Conference on
Applications and Theory of Petri Nets (ICATPN 2003), volume 2679 of Lecture
Notes in Computer Science, pages 483-505. Springer-Verlag, June 2003.

[22] C. Bock. Post to the u2p-issues mailing list, 2003.

[23] E. Boerger, A. Cavarra, and E. Riccobene. An ASM Semantics for UML Ac­
tivity Diagrams. In Proceeding of 8th International Conference of Algebraic
Methodology and Software Technology, volume 1816 of Lecture Notes in Com­
puter Science, pages 293-308, 2000.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[24] E. Boerger, A. Cavarra, and E. Riccobene. Modeling the Dynamic of UML State
Machines. In Proceeding of 8th International Workshop, A SM 2000, volume
1912 of Lecture Notes in Computer Science, pages 232-241, 2000.

[25] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Comput. Netw. ISDN Syst., 14(l):25-59, 1987.

[26] F. Borceux. Handbook of Categorical Algebra: Basic Category Theory. Num­
ber 50 in Encyclopedia of Mathematics and its Applications. Cambridge Uni­
versity Press, 1994.

[27] R. H. Bourdeau and B. H. C. Cheng. A Formal Semantics for Object Model
Diagrams. IEEE Transactions on Software Engineering, 21(10):799—821, 1995.

[28] J. Buck, S. Ha, et al. Ptolemy: A Framework for Simulating and Prototyping
Heterogenous Systems. Int. Journal in Computer Simulation, 4(2), 1994.

[29] J. Campos and J. Merseguer. On the Integration of UML and Petri Nets in
Software Development. Lecture Notes in Computer Science, 2006. To appear.

[30] T. Cattel. Modeling and Verification of sC-l—I- Applications. In Proceedsing of
TACAS’98: Tools and Algorithms for the Construction and Analysis of Systems,
number 1384 in Lecture Notes in Computer Science, 1998.

[31] M. Chechik, S. Easterbrook, and V. Petrovykh. Model Checking over Multi-
Valued Logics. In J. N. Oliveira and P. Zave, editors, Proceedings of Formal
Methods Europe (FM E’01), 2001.

[32] F. Chen, M. D ’Amorim, and G. Rosu. Monitoring-Oriented Programming:
A Tool-Supported Methodology for Higher Quality Object-Oriented Software.
Technical Report UIUCDCS-R-2004-2420, University of Illinois at Urbana-
Champaign, 2004.

[33] F. Chen and G. Rosu. Towards Monitoring-Oriented Programming:A Paradigm
Combining Specification and Implementation. Electronic Notes in Theoretical
Computer Science, 89(2), 2003.

[34] S. Christensen and L. Petrucci. Towards a Modular Analysis of Coloured Petri
Nets. In Proceedings of 13th International Conference on Application and The­
ory of Petri Nets, volume 616 of Lecture Notes in Computer Science, pages
113-133, 1992.

[35] E. M. Clarke, O. Grumberg, and D. E. Long. Model Checking and Abstraction.
ACM Transactions on Programming Languages and Systems, 16(5): 1512—1542,
September 1994.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[36] M. Clavel, F. Duran, et al. Maude Manual (Version 2.1). Presented at
http://m aude.cs.uiuc.edu/, April 2004.

[37] K. Compton, J. Huggins, , and W. Shen. A Semantic Model for the State
Machine in the Unified Modeling Language. In Dynamic Behaviour in UML
Models: Semantic Questions, UML 2000 Workshop Proceedings, pages 25-31,
2000 .

[38] P. P. da Silva. A Proposal for a LOTOS-Based Semantics for UML. Tech­
nical Report UMCS-01-06'1, Department of Computer Science, University of
Manchester, Manchester, UK, June 2001.

[39] J. de Lara and H. Vangheluwe. A T oM 3 as a Meta-CASE Environment. In
Proceedings of 4th International Conference on Enterprise Information Systems,
2002 .

[40] Z. Dong, Y. FU, and X. He. Deriving Hierarchical Predicate/Transition Nets
from Statechart Diagrams. In Proceedings of 15th International Conference on
Software Engineering and Knowledge Engineering, 2003.

[41] Z. Dong and X. He. Integrating UML State-chart and Collaboration Diagrams
Using Hierarchical Predicate Transition Nets. In GI Lecture Notes in Informat­
ics, 2001.

[42] S. Easterbrook and M. Chechik. A Framework for Multi-Valued Reasoning
over Inconsistent Viewpoints. In Proceedings of 23rd International Conference
on Software Engineering, pages 411-420, 2001.

[43] H. Ehrig, G. Engels, et al. Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 1: Foundations. World Scientifc, 1997.

[44] H. Ehrig, A. Habel, et al. Parallelism and Concurrency in High Level Replace­
ment Systems. Mathematical Structures in Computer Science, 1:361-404, 1991.

[45] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations
and Initial Semantics. Springer-Verlag, 1985.

[46] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints. Springer-Verlag, 1990.

[47] H. Ehrig, J. Padberg, and L. Ribeiro. Algebraic High-Level Nets: Petri Nets
Revisited. In Recent Trends in Data Type Specification, 9th Workshop on Speci­
fication of Abstract Data Types Joint with the 4th COMPASS Workshop, volume
785 of Lecture Notes in Computer Science, pages 188-206. Springer, 1994.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://maude.cs.uiuc.edu/

www.manaraa.com

[48] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model
Checker. In F. Gaducci and U. Montanari, editors, Proceedings of the 4th In­
ternational Workshop on Rewriting Logic and Its Applications (W RLA 2002),
volume 71 of Electronic Notes in Theoretical Computer Science. Elsevier, Sep­
tember 2002.

[49] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming: Intro­
duction. Communications of the ACM, 44(10):29-32, 2001.

[50] G. Engels, J. H. Hausmann, et al. Dynamic Meta Modeling:A Graphical Ap­
proach to the Operational Semantics of Behavioral Diagrams in UML. In
A. Evans, S. Kent, and B. Selic, editors, Proceedings of 3rd International Con­
ference on the Unified Modeling Language, volume 1939 of Lecture Notes in
Computer Science, pages 323-337, 2000.

[51] G. Engels, R. Heckel, and S. Sauer. UML - A Universal Modeling Language?
In ICATPN 2000, volume 1825 of Lecture Notes in Computer Science, pages
24-38, 2000.

[52] R. Eshuis and J. Dehnert. Reactive Petri Nets for Workflow Modeling. In
Proceedings of the 24th International Conference on Applications and Theory of
Petri Nets (ICATPN 2003), volume 2679 of Lecture Notes in Computer Science,
pages 296-315, 2003.

[53] L. Favre and S. C. erici. Integrating UML and Algebraic Specification Tech­
niques. In Proceedings of 32nd International Conference on Technology of
Object-Oriented Languages, pages 151-162, 1999.

[54] A. C. Finkelstein, D. Gabbay, A. Hunter, et al. Inconsistency Handling in
Multiperspective Specifications. IEEE Transactions on Software Engineering,
20(8):569-578, August 1994.

[55] Y. Fu, Z. Dong, and X. He. A Methodology of Automated Realization of a Soft­
ware Architecture Design. In Proceeding of the 17th International Conference
on Software Engineering and Knowledge Engineering, Taipei, Taiwan, 2005.

[56] M. Gogolla. Graph transformations on the uml metamodel. In Proceedings
of ICALP Workshop Graph Transformations and Visual Modeling Techniques
(G V M T’2000), pages 359-371, 20002.

[57] M. Gogolla and F. P. Presicce. State Diagrams in UML: A Formal Semantics
using Graph Transformations. In Proceedings of International Conference of
Software Engineering, Workshop on Precise Semantics of Modeling Techniques,
pages 55-72, 1998.

Il l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[58] M. Gogolla and M. Richters. Transformation Rules for UML Class Diagrams. In
Selected papers from the First International Workshop on The Unified Modeling
Language; UML’98, volume 1618 of Lecture Notes in Computer Science, pages
92-106. Springer-Verlag, 1999.

[59] M. Gogolla, P. Ziemann, and S. Kuske. Towards an Integrated Graph Based
Semantics for UML. Electronic Notes in Theoretical Computer Science, 72(3),
2003.

[60] J. Gore. Object Structures: Building Object-Oriented Software Components
With Eiffel. Addison-Wesley Pub, 1996.

[61] M. M. Gorlick and R. R. Razouk. Using weaves for software construction and
analysis. In Proceedings of the 13th International Conference on Software En­
gineering (ICSEI3), Austin, TX, USA, May 1991.

[62] J. Gradecki and N. Lesiecki. Mastering AspectJ : Aspect-Oriented Programming
in Java, 2003.

[63] W. G. Griswold and M. Akit, editors. Proceedings of the 2nd International
Conference on Aspect-oriented Doftware Development. ACM Press, 2003.

[64] O. Grumberg and D. E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843-871, 1994.

[65] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4), 293-333 1996.

[66] J. Hatcliff, X. Deng, et al. Cadena: An Integrated Development, Analysis, and
Verification Environment for Component-based Systems. In ICSE ’03: Pro­
ceedings of the 25th International Conference on Software Engineering, pages
160-173, 2003.

[67] J. H. Hausmann, R. Heckel, and S. Sauer. Towards dynamic meta modeling
of uml extensions: An extensible semantics for uml sequence diagrams. In
Proceedings of IEEE Symposia on Human-Centric Computing Languages and
Environments (HCC’01), pages 80-87. IEEE Computer Society Press, 2001.

[68] K. Havelund and T. Pressburger. Model Checking Java Programs Using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4), 2000.

[69] K. Havelund and G. Rosu. Java PathExplorer - A Runtime Verification Tool.
In The 6th International Symposium on Al, Robotics and Automation in Space,
2001 .

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[70] K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer.
In 1st Workshop on Runtime Verification (R V ’01), volume 55 of Electronic
Notes in Theoretical Computer Science, 2001.

[71] X. He. A Formal Definition of Hierarchical Predicate Transition Nets. In Pro­
ceedings of the 17th International Conference on the Application and Theory of
Petri Nets, volume 1091 of Lecture Notes in Computer Science, 1996.

[72] X. He. Defining UML Class Diagrams using Hierarchical Predicate Transition
Nets. In Proceedings of the Workshop on Defining Precise UML Semantics in
ECOOP, 2000.

[73] X. He. Formalizing Class Diagrams Using Hierarchical Predicate Transition
Nets. In Proceedings of the 24th International Computer Software and Applica­
tion Conference, pages 217-222, 2000.

[74] X. He. Formalizing Use Case Diagrams in Hierarchical Predicate Transition
Nets. In Proceedings of the IFIP 16th World Computer Congress, pages 484-
491, 2000.

[75] X. He and Y. Deng. A Framework for Developing and Analyzing Software
Architecture Specifications in SAM. The Computer Journal, 45(1):111—128,
2002 .

[76] R. Heckel and S. Sauer. Strengthening UML Collaboration Diagrams by State
Transformations. In Proceedings of Fundamental Approaches to Software En­
gineering (FASE’2001), volume 2185 of Lecture Notes in Computer Science,
pages 109-123, 2001.

[77] B. HNATKOWSKA and Z. HUZAR. Transformation of Dynamic Aspects of
UML Models into LOTOS Behaviour Expressions. International Journal of
Applied Mathematics and Computer Science, 11 (2):537-556, 2001.

[78] C. Hoare. Communication Sequential Processes. Prentice Hall, 1995.

[79] K. Hoffmann, H. Ehrig, and T. Mossakowski. High-Level Nets with Nets and
Rules as Tokens. In Applications and Theory of Petri Nets 2005, 26th Inter­
national Conference, volume 3536 of Lecture Notes in Computer Science, pages
268 - 288, 2005.

[80] G. J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software
Engineering, 23(5), May 1997.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[81] Z. Hu and S. M. Shatz. Explicit Modeling of Semantics Associated with Com­
posite States in UML Statecharts. Accepted for publication in the In t’l Journal
of Automated Software Engineering, 2005.

[82] J. Huggins. Abstract state machine homepage:
http://www.wwcs.umich.edu/gasm.

[83] A. Hunter and B. Nuseibeh. Managing Inconsistent Specifications:Reasoning,
Analysis, and Action. ACM Transactions on Software Engineering and Method­
ology, 7(4):335-367, October 1998.

[84] J. B. Jprgensen. Coloured Petri Nets in UML-Based Software Development -
Designing Middleware for Pervasive Healthcare. In Proc. of the Fourth Interna­
tional Workshop on Practical Use of Coloured Petri Nets and the CPN Tools,
2002 .

[85] E. Y. T. Juan, J. J. P. Tsai, and T. Murata. Compositional Verification of Con­
current Systems Using Petri-net-based Condensation Rules. ACM Transactions
on Programming Languages and Systems, 20(5):917-979, 1998.

[86] G. Karsai, S. Neema, et al. A Modeling Language and Its Supporting Tools
for Avionics Systems. In Proceedings of the 21sth Digital Avionics Systems
Conference, 2002.

[87] S.-K. Kim and D. Carrington. Formalizing the UML Class Diagram Using
Object-Z. In R. France and B. Rumpe, editors, Proceedings of UML’99 - The
Unified Modeling Language. Beyond the Standard, volume 1723 of Lecture Notes
in Computer Science, pages 83-98, 1999.

[88] S.-K. Kim and D. Carrington. UML Metamodel Formalization with Object-
Z: the State Machine Package. Technical Report 00-29, Dept, of Computer
Science, the University of Queensland, 1999.

[89] S.-K. Kim and D. Carrington. A Formal Mapping between UML Models and
Object-Z Specifications. In Proceedings of ZB ’2000: Formal Specification and
Development in Z and B, volume 1878 of Lecture Notes in Computer Science,
pages 2-21, 2000.

[90] S.-K. Kim and D. Carrington. Metamodeling Approach to Integrate between
the UML State Machine and Object-Z. In Proceedings of 4th International
Conference on Formal Engineering Methods, volume 2495 of Lecture Notes in
Computer Science, 2002.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.wwcs.umich.edu/gasm

www.manaraa.com

[91] E. Kindler. A Compositional Partial Order Semantics for Petri Net Compo­
nents. In ICATPN ’97: Proceedings of the 18th International Conference on
Application and Theory of Petri Nets, volume 1248 of Lecture Notes in Com­
puter Science, pages 235-252, 1997.

[92] S. Kuske. A Formal Semantics of UML State Machines Based on Structured
Graph Transformation. In UML 2001 - The Unified Modeling Language, Model­
ing Languages, Concepts, and Tools, f th International Conference, volume 2185
of Lecture Notes in Computer Science, pages 241-256, 2001.

[93] S. Kuske, M. Gogolla, et al. An Integrated Semantics for UML Class, Object,
and State Diagrams based on Graph Transformation. In M. Butler and K. Sere,
editors, 3rd International Conference of Integrated Formal Methods (IFM ’02).
Springer, 2002.

[94] L. Kuzniarz, G. Reggio, et al., editors. Workshop on Consistency Problems in
UML-based Software Development. Blekinge Institute of Technology, 2002.

[95] L. Kuzniarz, G. Reggio, et al., editors. Workshop on Consistency Problems in
UML-based Software Development II. Blekinge Institute of Technology, 2003.

[96] J. P. Lopez-Grao, J. Merseguer, and J. Campos. From UML Activity Diagrams
to Stochastic Petri nets: Application to Software Performance Engineering.
SIGSOFT Software Engineering Notes, 29(1):25—36, 2004.

[97] I. Lee, S. Kannan, et al. Runtime Assurance Based on Formal Specifications. In
Proceedings of the International Conference on Parallel and Distributed Process­
ing Techniques and Applications, 1999.

[98] S. W. Lewandowski and X. He. Generating Code for Hierarchical Predicate
Transition Net Based Designs. In Proceedings of the 12th International Con­
ference on Software Engineering & Knowledge Engineering, Chicago, U.S.A.,
pages 15-22, July 2000.

[99] J. Lilius. On the Compositionality and Analysis of Algebraic High-Level Nets.
Digital Systems Lab. Series A: Research Report, (16), 1991.

[100] D. Luckham, J. Kenney, L. Augustin, et al. Specification and analysis of sys­
tem architecture using rapide. IEEE Transactions on Software Engineering,
21 (4):336—355, 1995.

[101] D. C. Luckham and J. Vera. An Event Based Architecture Definition Language.
IEEE Transactions on Software Engineering, 21(9), 1995.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[102] P. L. M. Clavel, S. Eker and J. Meseguer. Principles of Maude. In J. Meseguer,
editor, Electronic Notes in Theoretical Computer Science, volume 4. Elsevier
Science Publishers, 1996.

[103] A. Maggiolo-Schettini and A. Peron. Semantics of Full Statecharts Based on
Graph Rewriting. In Proceedings of Graph Transformation in Computer Sci­
ence, volume 776 of Lecture Notes in Computer Science, pages 265-279, 1994.

[104] A. Maggiolo-Schettini and A. Peron. A Graph Rewriting Framework for State­
charts Semantics. In Proceedings of 5th Int. Workshop on Graph Grammars and
their Application to Computer Science, volume 1073, pages 107-121. Springer-
Verlag, 1996.

[105] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explo­
sion Problem. Kluwer Academic, 1993.

[106] N. Medvidovic, P. Oreizy, et al. Using Object-Oriented Typing to Support
Architectural Design in the C2 Style. In Proceedings of the 4th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 24-32, 1996.

[107] J. Merseguer, J. Campos, et al. A Compositional Semantics for UML State
Machines Aimed at Performance Evaluation. In WODES ’02: Proceedings of
the Sixth International Workshop on Discrete Event Systems (W ODES’02),
pages 295-302, 2002.

[108] J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and
Computation, 88(2): 105—155, Oct 1990.

[109] E. Mikk, Y. Lakhnech, et al. Implementing Statecharts in PROMELA/SPIN. In
Proceedings of 2nd IEEE Workshop on Industrial Strength Formal Specification
Techniques, Boca Raton, FL, 1998.

[110] R. Milner and R. Milner-Gulland. Communication and Concurrency. Prentice
Hall PTR, 1995.

[111] M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture Re­
finement. IEEE Transactions on Software Engineering, 21(5), 1995.

[112] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of
the IEEE, 77(4):541-580, 1989.

[113] G. Murphy and K. Lieberherr, editors. Proceedings of the 3rd International
Conference on Aspect-oriented Software Development. ACM Press, 2004.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[114] K. Narayanaswamy and N. Goldman. “Lazy” Consistency: A Basis for Coop­
erative Software Development. In Proceedings of International Conference on
Computer-Supported Cooperative Work, pages 257-264, 1992.

[115] M. Nielsen, L. Priese, and V. Sassone. Characterizing Behavioural Congruences
for Petri Nets. In Proceedings of 6th International Conference on Concurrency
Theory, volume 962 of Lecture Notes in Computer Science, pages 175-189, 1995.

[116] O. Nierstrasz and F. Achermann. A Calculus for Modeling Software Compo­
nents. In Formal Methods for Components and Objects, First International
Symposium (FMCO 2002), volume 2852 of Lecture Notes in Computer Science,
2003.

[117] B. Nuseibeh, S. Easterbrook, and A. Russo. Making Inconsistency Respectable
in Software Development. Journal of Systems and Software, 56(11), November
2001 .

[118] I. Ober. An ASM Semantics of UML Derived from the Meta-model and Incor­
porating Actions. In Proceedings of Abstract State Machines 2003. Advances
in Theory and Practice: 10th International Workshop, volume 2589 of Lecture
Notes in Computer Science, pages 356-3371, 2003.

[119] Object Management Group. Unified Modeling Language, 1.4 edition, 2001.

[120] Object Management Group. Unified Modeling Language, 2.0 edition, 2004.

[121] T. C. of ISO/IEC. High-level petri nets - concepts, definitions and graphical
notation, iso/iec 15909-1, final committee draft, may 2002.

[122] H. Ossher and G. Kiczales, editors. Proceedings of the 1st International Con­
ference on Aspect-oriented Coftware Development. ACM Press, 2002.

[123] S. Owre and N. Shankar. The Formal Semantics of PVS. Technical Report
SRI-CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park,
aug 1997.

[124] S. Owre, N. Shankar, et al. PV S System Guide. Computer Science Laboratory,
SRI International, sep 1999.

[125] J. Padberg. Place/Transition Net Modules: Transfer from Specification Mod­
ules. Technical Report Technical Report 2001-03, TU-Berlin, 2001.

[126] J. Padberg. Petri Net Modules. Journal on Integrated Design and Process
Technology, 6(4): 121-137, 2002.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[127] J. Padberg and H. Ehrig. Petri Net Modules in the Transformation-based Com­
ponent Framework. Journal of Logic and Algebraic Programming, accepted,
2005.

[128] J. Padberg, H. Ehrig, and L. Ribiero. Algebraic High-Level Net Transformation
Systems. Mathematical Structures in Computer Science, 5:217-256, 1995.

[129] F. Parisi-Presicce and A. Pierantonio. An Algebraic Theory of Class Specifica­
tion. ACM Transactions on Software Engineering and Methodology, 3(2): 166-
199, 1994.

[130] L. Priese and H. Wimmel. A Uniform Approach to True-Concurrency and
Interleaving Semantics for Petri Nets. Theoretical Computer Science, 206(1-
2):219-256, 1998.

[131] G. Rosu and K. Havelund. Rewriting-based Techniques for Runtime Verifica­
tion. Journal of Automated Software Engineering, 2004.

[132] First Workshop on Runtime Verification (R V ’01), Paris, France. Electronic
Notes in Theoretical Computer Science, Volume 55, Issues 2, 2001.

[133] Second Workshop on Runtime Verification (R V ’02), Copenhagen, Denmark,
Electronic Notes in Theoretical Computer Science, Volume 70, Issues 4, 2002.

[134] Third Workshop on Runtime Verification (R V ’03), Boulder, Colorado, USA,
Electronic Notes in Theoretical Computer Science, Volume 89, Issues 2, 2003.

[135] Fourth Workshop on Runtime Verification (R V ’04), Barcelona, Spain. Elec­
tronic Notes in Theoretical Computer Science, Volume 113, 2004.

[136] J. Saldhana and S. M. Shatz. UML Diagrams to Object Petri Net Models:
An Approach for Modeling and Analysis. In Proceedings of the International
Conference on Software Engineering and Knowledge Engineering, pages 103-
110 , 2000 .

[137] J. Saldhana, S. M. Shatz, and Z. Hu. Formalization of Object Behavior and
Interactions From UML Models. International Journal o f Software Engineering
and Knowledge Engineering, pages 643-673, 2001.

[138] S. Savage, M. Burrows, et al. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. ACM Transactions on Computer Systems, 15(4):391-
411, 1997.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[139] T. Schafer, A. Knapp, and S. Merz. Model Checking UML State Machines and
Collaborations. Electronic Notes in Theoretical Computer Science, 55(3): 1-13,
2001 .

[140] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide. Computer Science Laboratory, SRI International, Menlo Park, sep 1999.

[141] M. Shaw, R. DeLine, et al. Abstractions for Software Architecture and Tools
to Support Them. IEEE Transactions on Software Engineering, 21(4), April
1995.

[142] W. Shen. The Application of Abstract State Machines in Software Engineering.
PhD thesis, Dept, of EECS, The University of Michigan, 2001.

[143] C. Sibertin-Blanc. A Client-Server Protocol for the Composition of Petri Nets.
In Proceedings of l f th International Conference on Application and Theory of
Petri Nets, volume 691 of Lecture Notes in Computer Science, pages 377-396,
1993.

[144] C. Sibertin-Blanc. Cooperative Nets. In Proceedings of the 15th International
Conference on Application and Theory of Petri Nets, volume 815 of Lecture
Notes in Computer Science, pages 471-490, 1994.

[145] G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers, 2000.

[146] G. Spanoudakis and A. Finkelstein. Reconciling Requirements: a Method for
Managing Interference, Inconsistency and Conflict. Annals of Software Engi­
neering, 3:433-457, 1997.

[147] G. Spanoudakis and A. Zisman. Inconsistency Management in Software Engi­
neering: Survey and Open Research Issues. Handbook of Softawre Engineering
and Knowledge Engineering, pages 329-380, 2001.

[148] C. Szyperski and R. Vernik. Establishing System-wide Properties of
COmponent-based Systems - A Case for Tiered Component Frameworks. In
OMG-DARPA-MCC Workshop on Compositional Software Architectures, Jan­
uary 1998.

[149] I. Traore. An Outline of PVS Semantics for UML Statecharts. Journal of
Universal Computer Science, 6(11): 1088—1108, 2000.

[150] K. Turner and M. Sighireanu. ELOTOS: (Enhanced) Language Of Temporal
Ordering Specification, chapter 10 in Software Specification Methods, pages
165-190. Springer-Verlag, 2001.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[151] R. Valk. Algebraic High-Level Nets.

[152] R. Valk. Petri Nets as Token Objects - An Introduction to Elementary Object
Nets. In J. Desel and M. Silva, editors, 19th International Conference on Ap­
plication and Theory of Petri nets, volume 1420 of Lecture Notes in Computer
Science, pages 1-25. Springer, 1998.

[153] R. Valk. Concurrency in Communicating Object Petri Nets, volume 2001 of
Lecture Notes in Computer Science, pages 164-195. Springer-Verlag, 2001.

[154] A. Valmari. Compositionality in State Space Verification Methods. In Proceed­
ings of the 17th International Conference on Application and Theory of Petri
Nets, pages 29-56, London, UK, 1996. Springer-Verlag.

[155] W. M. P. van der Aalst, K. M. van Hee, and R. A. van der Toorn. Component-
Based Software Architectures: A Framework Based on Inheritance of Behavior.
Science of Computer Programming, 42(2-3):129-171, 2002.

[156] A. van Lamsweerde, R. Darimont, and E. Letier. Managing Conflicts in Goal-
Driven Requirements Engineering. IEEE Transactions on Software Engineering,
24(ll):908-922, November 1998.

[157] A. van Lamsweerde and E. Letier. Handling Obstacles in Goal-Oriented
Requirements Engineering. IEEE Transactions on Software Engineering,
26(10):978—1005, 2000.

[158] S. Vestal. Metah user’s manual, 1998.

[159] E. Y. Wang, H. A. Richter, and B. H. C. Cheng. Formalizing and integrating the
dynamic model within OMT. In Proceedings of the 19th international conference
on Software Engineering, pages 45-55. ACM Press, 1997.

[160] J. Wang, X. He, and Y. Deng. Introducing Software Architecture Specification
and Analysis in SAM through an Example. Information and Software Technol­
ogy, 41(7) :451—467, 1999.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX A

S/GW -ALGEBRA

The 5/Gmv-algebra B for a function net B N — (N , Pin, Pout, allocate) where AT

(SP E C , X , P, T , type, cond, pre, post, A) is given by:

• B x r a n s i t io n = -G

• Bpiace P ■>

• PlnPlace = Pint

• BoutPlace = Pout>

• B b o o I = {true, /a/se};

• -6System = { (B N , M)\M is a marking of the function net BiV} U {undef};

• BinEvent = U p£pinallocate(p),

• BoutEvent = U p gP out A j/p e(p) j

• B D om ain xl = A s where an G X., for i = 1, n;

• tru thV alue = true; fa lseV alue = false;

• enabledp BgyStem X B'lrans///o/; X B j)o,na(nxi X . . . X Bp)ornainxn > Bb00i with

enabledB((B N ,M) ,t ,v xi , . . . ,v xn) = <

121

true : (a(pre(t)) < M)

and a(cond(t))

fa lse : else

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

where a is an assignment for variables in X with a(xi) = vxi, i = 1,..., n.

enabled□ : B,B • S y s tem B booI with

enabled'B({BN, M)) =

true 31 G B j 'ransifi0n,

xi G DomainXi,i = 1 :

enabledsiiBN , M),t, vxi, ...,vxn) = true

fa lse : else

• f i r e B ■ B s y Stem x B rpransm on x B£>omainxi x ... x B Domairixn & S y s tem

f ir e B((BN , M) ,t ,v xl j * * * > ^ x n) ^
(B N ,M ') enableds({B N ,M),t,

vxi , - , v xn) = true
u ndef else

where M ' = M © a(pre(t)) © a(post(t)) and a is an assignment for variables in

X such that a(xi) = vXi, i = l,...,n.

• hasoutputB ■ B s y Sfem x B o uip iace x B o utp vent > B booI with

hasoutputB((BN , M),p , e)
true : (e,p) < M

fa lse : else

hasoutput'B : B System —► -Bsooi with

hasoutput'B({BN, M)) =
true \ 3e G BoutEVent ; P G BoutPiace •

hasoutputB({B N ,M),p ,e) = true

/a /se : etse

• h a s in p u t B • B System X B i np iace * B B qoI with

hasintputB({BN, M) , p)
true : 3e G < M

fa lse : else

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

hasinputB . Bsystem *■ B booI with.

hasinput'b ((B N , M)) = <

true : 3p 6 B InPiace :

hasinputB ((B N , M) , p) = true

f a ls e : else

• OUtputB ■ Bsystem, X BoutPlace OutEvent * Bsystem w i t h

* * / / da t 71 /f\ a I (B N , M') : hasoutputB((B N ,M),p ,e) = trueoutputB((B N ,M),p ,e) = <
[u ndef : else

where M ' = M © (e,p).

• inputs • BSystem X BjnEvent ̂Bsystem with

f (HiV, M ® (e,p)) : 3p G B InPlace : e G allocate(p)
inputb ((B N , M) , e) = <

[undef : else

Operation enabled specifies if a transition is enabled under the current marking

and the assignment to variables. Operation f ir e fires a given transition with a given

variable assignment. Operation hasoutput checks if a given output place contains a

given message. Operation hasinput checks if a given input place contains a message.

Operations enabled', hasoutput' and hasinput' are the more abstract version of corre­

sponding operations. Operation output removes a given message from a given output

place, while operation input adds a given message to an input place.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B

MAUDE CODE FOR HURRIED PHILOSOPHERS

The following is the functional module for 57 (Tew-Algebra of Servant in hurried

philosophers system mentioned in the Chapter 3:

fmod FORK_SYSTEM_NET_SORT is
including FORKAGENT_PN .
including SYSTEM_NET_SORT .

vars m ml m2 : Marking .
var phil : PhillD .
var msg : MsgID .
var fork : NzNat .
var seat : NzNat .
var servant : ServantID .

op fenabled : System FTrans -> Bool [strat (0)] .
ceq fenabled([ml token(AvailFork.seat)

token(ForkRequest,(phil,servant,MForkRequest,seat))
token(AvailFork,fork) m2], AssignFork) = true

if fork = (seat rem ForkSeatNum) + 1 .
eq fenabled([m].AssignFork) = false [owise] .

eq fenabled([ml token(ForklnUse.fork)
token(ReleasedFork,(phil,servant,MForkRelease.fork))
m2].RevokeFork) = true .

eq fenabled([m].RevokeFork) = false [owise] .

op fenabled : System FTrans PhillD ServantID MsgID NzNat
-> Bool [strat (6 0)] .

ceq fenabled([m token(AvailFork.seat) token(AvailFork, fork)
token(ForkRequest,(phil,servant.MForkRequest,seat))
] .AssignFork,phil,servant,MForkRequest,seat) = true

if fork = (seat rem ForkSeatNum) + 1 .
eq fenabled([m].AssignFork,phil,servant,msg,fork)

= false [owise] .

eq fenabled([m token(ForkInUse.fork)
token(ReleasedFork,(phil,servant.MForkRelease,fork))
], RevokeFork,phil,servant,MForkRelease,fork) = true .

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

eq fenabled([m].RevokeFork,phil,servant,msg,fork)
= false [owise] .

op ffire : System FTrans PhilAgentID ForkAgentID MsgID NzNat
-> System [strat (6 0)] .

ceq ffire([m token(AvailFork,seat) token(AvailFork.fork)
token(ForkRequest,(phil,servant.MForkRequest,seat))
], AssignFork,phil,servant,MForkRequest,seat) =

[m token(ForklnUse,seat) token(ForklnUse,fork)
token(ForkAvail,(servant,phil.MForkAvail,seat))
token(ForkAvail,(servant,phil,MForkAvail,fork))]

if fork = (seat rem ForkSeatNum) + 1 .

ceq ffire([m token(ForklnUse,seat) token(ForklnUse.fork)
token(ReleasedFork,(phil,servant,MForkRelease,seat))

], RevokeFork,phil,servant,MForkRelease,seat)
= [m token(AvailFork,fork) token(AvailFork.seat)]

if fork = (seat rem ForkSeatNum) + 1 .

var p : FPlace .
op favailable : System FPlace -> Bool [strat (10)] .

eq favailable([ml token(ForkAvail,(servant,phil,msg,fork)) m2],
ForkAvail) = true .

eq favailable ([m] ,p) = false [owise] .

sort FInEvent FOutEvent .
subsort FInEvent < Message .
subsort FOutEvent < Message .

mb (phil,servant,MForkRequest,fork) : FInEvent .
mb (phil,servant,MForkRelease,fork) : FInEvent .
mb (servant,phil,MForkAvail,fork) : FOutEvent .

op foutput : System FPlace FOutEvent
-> System [strat (1 3 0)] .

eq foutput([m token(ForkAvail,(servant,phil,msg,fork))],
ForkAvail,(servant,phil,msg,fork)) = [m] .

op finput : System FInEvent -> System [strat (1 2 0)] .
eq finput([m],(phil,servant.MForkRequest,fork)) =

[m token(ForkRequest,(phil,agent,MForkRequest,fork))] .
eq finput([m],(phil,servant,MForkRelease,fork)) =

[m token(ReleasedFork,(phil,servant,MForkRelease,fork))] .
endfm

The following is the system module for component architecture Servant in hurried

philosophers system mentioned in the chapter 3:

mod FORK_SYSTEM_NET_EXEC is
including QUEUE .

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

including FORK_SYSTEM_NET .
including FORK_SYSTEM_NET_SORT

vars m ml m2 : Marking .
var msg : MsgID .
vars fork : NzNat .
var phil : PhillD .
var servant : ServantID .
var q : Queue .

crl [Tin_Servant]:
token(FSPin, [(phil,servant,msg,fork)] ; q) token(FSPobject,[m])
= >

token(FSPobj ect,f input([m],(phil,servant,msg,fork)))
token(FSPin, q)
if fenabled([m].AssignFork) = false /\

fenabled([m].RevokeFork) = false /\
favailable([m].ForkAvail) = false .

crl [TforkAvail]:
token(FSPobject,[ml token(ForkAvail,(servant,phil,msg,fork)) m2])
token(FSPoutput, q)
= >

token(FSPoutput, q ; [(servant,phil,msg,fork)])
token(FSPobj ect,

foutput([ml token(ForkAvail,(servant,phil,msg,fork)) m2],
ForkAvail,(servant,phil,msg,fork)))

if favailable([ml token(ForkAvail,(servant,phil,msg,fork)) m2],
ForkAvail) = true .

crl [Tresponse_AssignFork]:
token(FSPobject,

[ml token(ForkRequest,(phil,servant,MForkRequest,fork)) m2])
=>

token(FSPobject,
ffire([ml token(ForkRequest,(phil,servant,MForkRequest,fork)) m2],

AssignFork,phil,servant.MForkRequest,fork))
if fenabled([ml token(ForkRequest,(phil,servant,MForkRequest,fork)) m2],

AssignFork,phil,servant,MForkRequest,fork) = true /\
favailable([ml token(ForkRequest,(phil,servant,MForkRequest,fork)) m2],

AvailFork) = false .

crl [Tresponse_RevokeFork]:
token(FSPobject,

[ml token(ReleasedFork,(phil,servant,MForkRelease,fork)) m2])
=>

token(FSPobject,
ffire([ml token(ReleasedFork,(phil,servant,MForkRelease,fork)) m2],

RevokeFork,phil.servant.MForkRelease,fork))
if fenabled([ml token(ReleasedFork,(phil,servant,MForkRelease,fork)) m2],

RevokeFork,phil,servant, MForkRelease, fork) = true /\
favailable([ml token(ReleasedFork,(phil,servant,MForkRelease,fork)) m2],

AvailFork) = false .
endm

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The following is the atomic predicates of component architecture Philosopher

hurried philosophers system mentioned in the chapter 3:

mod SIG_BN_PHIL_PREDS is
protecting PHIL_COMPONENT_ARCH .
including SATISFACTION .

subsort Marking < State .

var seat : NzNat .
var m : Marking .
var phil : PhilAgentID .
var table : TableAgentID .

op pReading : PhilAgentID -> Prop .
eq m token(Reading,phil) |= pReading(phil) = true .

op pP3 : PhilAgentID -> Prop .
eq m token(P3,phil) |= pP3(phil) = true .

op pRequestSeat : Message -> Prop .
eq m token(RequestSeat,(phil,table,MSeatRequest,seat))

|= pRequestSeat((phil,table,MSeatRequest,seat)) = true .

op pPhilLeft : Message -> Prop .
eq m token(PhilLeft,(phil,table,MPhilLeft,seat)) |=

pPhilLeft((phil,table,MPhilLeft,seat)) = true .

op pThinking : PhilAgentID NzNat -> Prop .
eq m token(Thinking,(phil,seat)) |= pThinking(phil,seat) = true .

op pP2 : PhilAgentID NzNat -> Prop .
eq m token(P2,(phil,seat)) |= pP2(phil,seat) = true .

op pEating : PhilAgentID NzNat -> Prop .
eq m token(Eating,(phil,seat)) |= pEating(phil.seat) = true .

endm

mod PHIL-PREDS is
protecting SIG_BN_PHIL_PREDS .
including SATISFACTION .

subsort Marking < State .

var seat : NzNat .
vars m ml : Marking .
var phil : PhilAgentID .

op pPSPOBJECT-Reading : PhilAgentID PhilAgentID -> Prop .
ceq (ml token(PSPobject, <phil,[m]>))

1= pPSPOBJECT-Reading(phil,phil) = true
if m |= pReading(phil) = true .

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

op pPSPOBJECT-Thinking : PhilAgentID PhilAgentID NzNat -> Prop .
ceq (mi token(PSPobject, <phil,[m]>))

1= pPSPOBJECT-Thinking(phil,phil.seat) = true
if m |= pThinking(phil.seat) = true .

op pPSPOBJECT-Eating : PhilAgentID PhilAgentID NzNat -> Prop .
ceq (ml token(PSPobject, <phil,[m]>))

1= pPSPOBJECT-Eating(phil,phil,seat) = true
if hi |= pEating(phil,seat) = true .

op pPSP0BJECT-P2 : PhilAgentID PhilAgentID NzNat -> Prop .
ceq (ml token(PSPobject, <phil,[m]>))

|= pPSP0BJECT-P2(phil,phil,seat) = true
if m |= pP2(phil,seat) = true .

op pPSP0BJECT-P3 : PhilAgentID PhilAgentID -> Prop .
ceq (ml token(PSPobject, <phil,[m]>))

1= pPSP0BJECT-P3(phil,phil) = true
if m |= pP3(phil) = true .

endm

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C

DERIVING HIERARCHICAL PREDICATION

TRANSITION NETS FROM UML STATE MACHINES

C .l H PrT N s

An Hierarchical Predication Transition Net (HPrTN) [71] N consists of (1) a finite

hierarchical net structure (P, T, P, p), (2) an algebraic specification S P E C , and (3)

a net inscription (<p, L, R, Mo).

(P, T, F) is the essential net structure, where P U T is the set of nodes satisfying

the condition P fl T = 0. P is called the set of places and T is called the set of

transitions. There are two kinds of nodes for both places and transitions - elementary

nodes (represented by solid circles or boxes) and super nodes (represented by dotted

circles or boxes). Elementary nodes have the traditional meaning in flat Petri net

models. Super nodes are introduced to abstract and refine data and processing in

HPrTNs. p : P U T —> p (P U T) is a hierarchical mapping tha t defines the hierarchical

relationships among the nodes in P and T.

The underlying specification S P E C = (S , OP, Eq) consists of a signature S =

(S, OP) and a set Eq of S-equations. Signature S — (S , OP) includes a set of sorts

S and a family O P = (Opsi„ sn ,s) of sorted operations for s 'l , sn, s € S. The S-

equations in Eq define the meanings and properties of operations in O P. S P E C is a

meta-language to define the tokens, labels, and constraints of an HPrTN.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The net inscription (p , L , R , M0) associates each graphical symbol of the net struc­

ture (P , T , F, p) with an entity in the underlying SP E C , and thus defines the static

semantics of an HPrTN. Thus different HPrTNs have different net inscriptions.

<p : P Uses (5) associate each place p in P with a subset of sorts in S, which defines

the valid values for the sort of each place. L : F —> L a b e l s (X) is a sort-respecting

labeling of N where L a b e l s (X) (X is the set of sorted variables disjoint with OP) is

a set of labels. R : T —>■ T e r m o p , b o o i (X) is a well-defined constraining mapping of

N , which associates each transition t in T with a first order logic formula defined in

the underlying algebraic specification. M0 : P —>• M CONg is a sort-respecting initial

marking of N , which assigns a multi-set of tokens to each place p in P. The tokens of

a super place are a sorted union of the tokens of its interface child places since only

those tokens are externally accessible.

A marking M of an HPrTN is a mapping P —> M C O N s from the set of places

to multi-sets of tokens. An elementary transition is enabled if its pre-set contains

enough tokens and its constraint is satisfied with an occurrence mode. The firing of

an enabled elementary transition consumes the tokens in the pre-set and produces

tokens in the post-set. A super transition is enabled if at least one of its interface

child transitions is enabled and its firing is defined by an execution sequence of its

child transitions, and thus its behavior is fully defined by its child transitions. The

firing rule of a transition is formally defined in [71]. Two transitions (including the

same transition with two different occurrence modes) can fire concurrently if they are

not in conflict (the firing of one of them disables the other). Conflicts are resolved

non-deterministically. The firing of an elementary transition is atomic, and the firing

of a super transition implies the firing of some elementary transition and may not be

atomic. We define the behavior of an HPrTN to be the set of all possible maximal

execution sequences containing only elementary transitions. Each execution sequence

represents consecutively reachable markings from the initial marking, in which a

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

successor marking is obtained through a step (firing of some enabled transitions)

from the predecessor marking.

C.2 M ethodology

Before we present the specific rules to formalize different components of state ma­

chines, we would like to provide the reader with the methodology tha t illustrates how

to provide a more precise semantics for state machines.

Step 1 : Define the way to represent the events and actions associated with transi­

tions. An event is a specification of a type of observable occurrence. Some

types of events can have parameters. In HPrTNs, an event instances is re­

alized as a token, which are specified in a uniform format so that they can

present any parameters of events.

An action is “a specification of an executable statement that forms an

abstraction of a computational procedure resulting in a change in the state

of the model” [119]. An action is either synchronous or asynchronous. Since

HPrTN can model both of them, only asynchronous actions are considered

in my research. Synchronous actions can be transformed into two asyn­

chronous actions. In state machine diagrams, there are several types of ac­

tions: CreateAction,CallAction, ReturnAction, TerminateAction, Destroy Ac­

tion, SendAction and UninterpretedAction. The first five actions are modeled

as call events sent to the state machine diagram of receiver and SendActions

are modeled as signal events. For UninterpretedActions, we only consider the

statements that can be transformed to boolean expressions used in guards

of transitions such as assignment statements, if-then-else statements, etc.

Step 2: Formalize all states by individual HPrTNs, called formal nets, according to

proposed State Rules. In this step, only net structures of formal nets are

specified. The algebraic specifications and net inscriptions of formal nets are

provided during the formalization of transitions, i.e. in Step 3.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Step 5: Realize all transitions of state machines by applying different rules related

with transitions. The firing of a transition of state machines consists of two

actions: leaving all states in leaving(t), and entering all states in enteringit) ,

which are realized by leaving rules and entering rules respectively. As a

result, the algebraic specification and net inscriptions of formal nets of states

are provided. More ever, the individual formal nets are connected due to the

realization of transitions.

Step 4 '■ Implement the implied mechanisms that are required but not realized in

the state machines. Such mechanisms include: 1) event broadcasting: An

event instance should be available to the whole system simultaneously; 2)

history recording: when a history pseudostate is active, the most recent

active substates of the state containing the pseudostate should be active; 3)

variable sharing: The actions and guards can share a set of global variables.

These mechanisms are critical to understand the dynamic behavior of state

machines. One of the main advantages of our methodology is to separate

the realizations of state machines and implied mechanisms, since the implied

mechanisms maybe different due to the various environments.

Step 5: Finally, provide a precise semantics of derived HPrTNs, especially to solve

the conflicts introduced by state machines or the procedure of realizations. In

addition, we have to establish the relationship between state configurations

and markings of HPrTNs to help the understanding of transformation.

Table C.2 illustrates the rules and in which step they will be applied.

C.3 States
In state machines, a state can have five associations: deferrableEvent, entry, exit,

doActivity and intemalTransition. deferrableEvent specifies a set of event types a

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

S te p R u le s

N am e M eaning

2 S tate R ule C onstructing th e form al net o f a sta te

SynchState R ule R ealizing th e syn chstates and related transitions

Sim ple Transition: L eaving R ealizing th e leaving actions of a sim ple transition

Sim ple Transition: Entering R ealizing th e entering actions o f a sim ple transition

Cross Transition: Leaving R ealizing th e leaving actions of a cross transition

Cross Transition: E ntering R ealizing th e entering actions o f a cross transition

Group T ransition Leaving R ealizing th e leaving actions of a group transition

3 Group Transition E ntering R ealizing th e entering actions o f a group transition

Initial State R ealizing th e in itia l pseudostates and related transitions

H istory S ta te R ealizing th e history pseud ostates and related transitions

Table 5: State Machine Diagram Formalization Rules

state machine should retain until an event type is not contained in the deferrableEvent

of a state configuration 1 or it triggers a transition, entry/ exit describes the first/last

action whenever the state is entered/exited, do Activity lists a sequence of atomic

actions that should be executed when the state is active. The activity can be termi­

nated by itself or interrupted when the state is exited. intemalTransition illustrates

a set of transitions that can be fired without exiting or reentering the state.

In the sequel, we assume each state or transition of a state machine has a dis­

tinguished name. And each place and transition in an HPrTN, the formal net of

the state machine, has a name such as namel-name2 , where namel is the name of

the corresponding state or transition in the state machine and name2 is given by

rules during the derivation. nameS is omitted if the place represents a state vertex.

-nameS specifies a set of places or transitions ending with _name2 where namel can

be concluded unambiguous in the context. A token is illustrated in bold font enclosed

by double quotation marks.

'T h e deferrableEvent o f a sta te configuration is th e union o f th e deferrableEvent o f each sta te in
th e sta te configuration.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

S_IP

states

I
I

I
I

Figure 25: The Formal Net of a Simple State

C.3.1 Sim ple States

Rule 1 (Sim ple State) A Simple state s is realized in Fig. 25:

In Fig. 25, the super transition s^DA represents the activities described by do Activ­

ity association and the place s J P illustrates the interruptible point of the activities.

When the activities are finished, the s J P has a token “FIN ISH E D ”; otherwise,

it has a token indicating the current step based on interruptible points. The super

transition s J T describes internalTransition association of state s. S-DA, s_IP and

s J T , and the associated arcs can be omitted if related associations do not exist.

The tokens in elementary place s indicate the status of state s and available event

instances that can trigger super transition s-E x it or S-IT. Both S-Exit and s J T

have multiple different enabling conditions. In this paper, we only illustrate these

enabling conditions and related firing result and its detail net structure is ignored.

C.3.2 C om posite States

Rule 2 (C om posite State) A composite state s is realized by the HPrTN in Fig.

26

Place S - I P , and transitions s^DA and .sJT are the same as the counterparts in Fig.

25. The tokens in elementary place s indicate the status of state s and available event

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

O s-IP
to simple states
contained by
state s r "

L s__Group_^

 i------1
s_Enter i

(̂) s_ExitReq

to its direct
substates

|_s_HisEnter _r* — - o -
s_History

from _Exit
of its direct
substates

to its direct
substates

Figure 26: The Formal Net of Composite State

instances that can trigger transition S-E xit or s.E nter. A state can be in one of five

statuses, represented by token “dot”, “s J n it”, “s_DH istory”, “s_H istory”, and

“waiting” respectively. Place s can contain at most one of them at any time, and

the meanings of them are as follows:

• “dot” : State s is active and idle;

• “s J n it” : State s is active, and it is in the process of entering into its default

direct substate;

• “s_DH istory” : State s is active, and it is in the process of entering into its

most recent active substates;

• “s_H istory” : State s is active, and it is in the process of entering into its most

recent active direct substates;

• “W A IT IN G ” : State s is active, and it is in the process of waiting for the exit

of its direct substates of s.

State s is inactive if place .s does not contain one of such tokens.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In UML state machines, when a transition t fires, it exits leavingit) and enters

entering(t) automatically. However, such atomic operation cannot be realized by a

single transition in HPrTN since the leaving(t) is unknown without giving a state

configuration. Therefore, the firing of a transition of state machines is implemented

step by step. S-ExitReq, containg the exit information of its direct substates, plays

an important role in the implementation that is described during the realization of

transition of state machines.

s-H istory and s-H isE nter represents the implementation of the procedure entering

into the most recent active direct substates. Since the most recent active direct

substates of an and-composite state are its regions, s-H istory and s-H isE nter can be

omitted in an and-composite state. Place S-History contains a token representing the

most recent active direct substate or a token “NULL” indicating no such information

is available and the default state is treated as the most recent active direct substate.

S-Group represents the exit of composite state s and its net structure is explained

in the following sections. If there is no transition t such that source(t) = s, sJGroup

can be omitted.

The entry and exit actions of a state are distributed into appropriate -E nter or

-E xit transitions during the realization of transitions of state machines.

To focus on the core components of state machines, the entryAction, doActivity,

and internalTransition associations are skipped in the following sections.

C.3.3 Pseudostates

A pseudostate is an abstraction that encompasses different types of transient ver­

tices in a state machine graph. Although pseudostates are transient and have no cor­

responding status in the object, they enhance the description power of state machines,

by making state machines easy to use and understand. UML state machines have

seven types of pseudostates: initial, deepHistory, shallowHistory, join, fork, junction

and choice. In this research, we do not consider history states. The derivation of

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

initial state is explained in this section, and the derivation of other pseudostates is

explained in Section C.4.4.

An initial pseudostate represents a default vertex that is the source for a single

transition to the default state of a composite state. When the composite state becomes

active without specifying which descendant is active, the system enters into the initial

state, which then goes into the default state unconditionally.

In state machines, only or-composite states can contain an initial state. When an

and-composite state becomes active without specifying the active substates explicitly,

the system enters into the initial pseudo states of its regions simultaneously. In order

to keep the structure of derivation uniform, we assume each and-composite state

contains an initial pseudo state and all regions are its default states.

R u le 3 (In itia l S ta te) Let s be a composite state containing an initial pseudostate.

The initial pseudostate is realized by the following enabling condition on transition

s-Enter:

• I f elementary place s contains a token “s -In it ”, s-E nter is enabled. When it

fires under this enabling condition, it replaces the token “s - I n i t” by ’’d o t” in

place s and outputs token ”p -I n i t” to the default state p if p is a composite

state or “d o t” if p is a simple state.

Fig. 27 illustrates an example to realize an initial pseudostate by applying InitState

rule to a composite state.

C .4 T ran sitio n s

A transition is a relationship between two state vertices indicating that the object

leaves the source state, enters the target state and performs specific actions when

some event instances occur provided that guard condition is satisfied. As a result of

firing a transition, some actions will be executed.

Although a transition only has one source state vertex and one target state vertex,

when it fires, it may exit from multiple states and enter multiple states, which makes

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

's_Inif
s_Enter

dot1
B2_InitBl_Init

0B1
B2_Init'Bl_Initdot’ dot'

| s_Enter |! s_Enter '

dot'dot

C E

Figure 27: The Formalization of Initial State

the derivation of transitions more difficult. To overcome the difficulty, transitions are

classified into four categories: simple transitions, cross transitions, group transitions

and compound transitions.

Definition 28 (Sim ple Transition) A transition t: Si ,s2 is a simple tran­

sition if and only if leaving(t) — {si} and entering(t) = {s2 }2.

D efinition 29 (Cross Transition) A transition t: Si ,s2 iS a cross tran­

sition if and only i f there is a composite state s such that (si G children+(s) A s 6

leaving(t)) or (s2 £ children+(s) A s 6 entering(t)). All such composite states are

called source/target cover states of t . A source/target cover state s is the outermost

source/target cover state i f any other source/target cover states are descendants of s.

Definition 30 (Group Transition) A transition t: S i ,s 2 is a group tran­

sition if and only if Si or s2 is a composite state.

D efinition 31 (C om pound Transition) A set of transitions is a compound tran­

sition if and only if firing all transitions of the set leads the system from a state

configuration to another state configuration; and for each transition, either source or

target state vertex is a pseudostate.

2 In the definitions of simple, cross and group transitions, both s\ and s 2 must be states, not
pseudostates

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 28: The Formalization of a Simple Transition

However, the categories of the transitions are not disjoint, i.e. a transition can be a

cross transition, and a group transition simultaneously. Here, the derivation of each

category is explained; then the complex cases are considered.

C .4.1 S im ple T ran sitio n s

A simple transition leaves one state-source state and enters one state-target state

when it fires. The following rule is used to realize a simple transition.

R u le 4 (S im ple T ran sitio n) Let transition t: si s 2 be a simple transition

in a state machine. The transition t is realized by the HPrTN in Fig. 28.

s i-E x it is enabled if place .sj contains a token “d o t” and a token “e” representing

the occurrence of an event instance e, provided guard c holds. When it fires under

such enabling condition, a token “d o t” is output to target place s2) and the exit

action of state Si and the entry action of state s2 are executed sequentially.

However, a transition in state machines may have no trigger event. In such case,

it is called a completion transition. A completion transition is enabled if and only if

the activity denoted by doActivity association in the source state has been completed

provided the guard holds. Thus, in the above rule, if t is a completion transition,

s i-E x it may be enabled only if the token contained in S i-IP is “F IN IS H E D ” .

C.4.2 C ross T ran sitio n s

When a cross transition fires, it does not only exit (enter) the source (target, resp.)

state; but also exits (enters) the source (target, resp.) cover states.

For a cross transition with a source cover state, when it fires, before the source cover

state exits, any other active substates of it should abort. Thus the derivation of a

cross transition becomes complex since the source cover state has to notify its children

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to exit. Also, the exitActions of the states should be executed in the order from the

innermost substate (s) to the outermost source cover state. In order to modeling such

situations, a special event called “s_A bort” or “s_C om pletion” for each composite

state s is introduced. Such events give the substates an opportunity to abort. The

following two rules assume that sourceft) and target(t) are simple states.

R u le 5 (C ross T ran s itio n Leaving) Let transition t: Sj s2 be a cross

transition and s be the outermost source cover state of t . Transition t can be realized

by adding the following enabling conditions:

1. The enabling condition of s i-E x it is the same as s i-E x it in Fig. 28; when

it fires, a token “s -A b o r t” if t is a completion transition, otherwise a token

“s-C o m p le tio n ” is output to each simple state that is a descendant of s, and

also, a token “S2 ” is sent to sFExitReq such that S2 6 childrens').

2. For each simple state p such that p G children^(s), transition p -E xit is en­

abled if p contains a token “d o t”, and either a token “s -A b o r t” or a token

“s -C o m p le tio n ” (In such case, s J P should contain a token “F IN IS H E D ”).

When it fires under such enabling condition, a token “N U L L ” is output to

s'-ExitReq such that p G children(s').

3. For each composite state p such that p G children^ (s), following enabling con­

ditions is added to transition pJExit:

• p-E xit is enabled if p^ExitReq contains a token “N U L L (If p is an or-

composite state) or n tokens “N U L L ” (If p is an and-composite state).

In such case, when p.Exit, fires, it output a token “N U L L ” to s'-ExitReq

where p G ch ild ren s ') .

• p-E xit is enabled if p-ExitReq contains a token “I” (I fp is an or-composite

state) or a token “I” and n-1 tokens “N U L L ” (If p is an and-composite

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

dot dot's_Exit u

NULL

dot'dot'

"NULL"

r 2_ExitReq

"NULL"
s_Abort' s_Abort'e"+"do^"r s’_Exit1+"dot'

Figure 29: The Formalization of a Cross Transition(Leaving)

state) where I is a place. I f p -E xit fires under this enabling condition, it

outputs a token “I” to s'-ExitReq where p G children(s').

4- S-E xit is enabled if s_ExitReq contains a token “I” (I f s is an or-composite

state) or a token “I” and n-1 tokens “N U L L ” (If s is an and-composite state).

When it fires under this enabling condition, it outputs a token “U n i t ” (I is a

composite state) or a token “d o t” (I is a simple state) to place I.

Fig. 29 represents the derivation of a cross transition t with outermost source cover

state s.

Actually, enabling conditions 1, 2, and 3 represent the step-by-step exit procedure

from innermost substates to the outermost source cover state; and the enabling con­

dition 4 models the procedure of leaving the outermost source cover state and enters

into the target state.

In state machines, when a transition fires, ancestor states of the target state and

other related states are active at the same time. In our derivation, we realize the

procedure step by step.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Vt s !_Enter Ts LEnter j- ®
dot1

” S 2 _ S 2 '

0C, s 2_Enter '■
"dot"------------ '

"dot"

Figure 30: The Formalization of a Cross Transition (Entering)

R u le 6 (C ross T ran s itio n E n te rin g) Let transition t: Sj <S2 fre a cross

transition and s1, . . . , sn be the set of target cover states of t such that sl £

children(si_1) fo r any i £ [2,n] and s2 £ children(sn) . The enabling condition

of S i-E xit is the same as the enabling condition of S i-E xit in Fig. 28, and when it

fires, a token “s 1s 2___ sn-S2 ” is output to place s1#

Fig. 30 illustrates a derivation of cross transition t with outermost target cover

state Si. Generally speaking, for a composite state s, s-E nter is enabled if one of the

following conditions holds:

• Place s contains a token “so -S i-^ snv such that So — s and s* £

children(si-i) for any i = l , 2 , . . . , n . In such case, when it fires, a token

“dot” is output to place s, and a token “si_S2 sn” is output to place si.

If s is an and-composite state, it also sends a token “dot” to place s' where

s' £ children's) and s' is a simple state, or a token “s '-In it” to place s' where

s' £ children(s) A s' s\ and s' is a composite state.

• Place s contains a token “s_p” such tha t p £ children(s). In such case, when it

fires, a token “dot” is output to place s and place p respectively. If s is an and-

composite state, it also sent a token “dot” to place s' where s' £ children's)

and s' is a simple state, or a token “s 'J n i t ” to place s' where s' £ children(s)

and s' is a composite state.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C.4.3 Group Transition

Assume transition t is not a cross transition in the following two rules tha t deal

with derivation of group transitions.

Rule 7 (Group Transition Leaving) Let t: si - f M s2 be a group transition,

where children(si) ^ 0 and children(s2) — 0. The transition t is realized by adding

the following enabling conditions:

• Si-Group is enabled if si contains a token “d o t” and a token “e ” provided guard

c holds. When it fires, it outputs a token “w a itin g ” and a token “s2” to place

,s1; and outputs a token “si-Abort ” i f t is not a completion transition, otherwise

“si-C om pletion” to all simple states that are descendants of state s\.

• For each simple state p such that p € children* (si), enabling condition of

P -E xit triggered by token A b o r t” or “-C o m p le tio n ” is the same as the

enabling condition 2 in Cross Transition Leaving Rule;

• For each composite state p such that p € children* (sf) , the enabling condition

3 in Cross Transition Leaving Rule is also added to transition p-E xit;

• s i-E x it is enabled if s\ contains a token “w a itin g ” and a token “s2 ”, and

Si-ExitReq contains enough “N U L L ” tokens (If s\ is an and-composite state,

enough means each direct substate contributed a “N U L L ” token. I f Si is an

or-composite state, enough means one). When it fires in such case, it outputs

a token “d o t” to place s2.

Fig. 31 describes the derivation of group transition t: si s2 .

R ule 8 (Group Transition Entering) Let t: si s2 be a group transition,

where children(s2) ^ 0 and children(si) = 0. Such a transition is realized by adding

the following enabling condition:

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

"dot"

"si_Abort",

s_GroupExitL ”S| A bort"

- - - r'l'NULL/
O —

B l_E xitR eq

"NULL"
r "NULL^-n r i ;_ExitReq
iP -lA jf, ► (^J)---- ► B 2 E x itr

B2_ExitReq

Js,_Exit i-

"dot"

”e"+"dot"

"waiting"+"s2" =© -
"waiting"+"s2"

Figure 31: The Formalization of a Group Transition(leaving)

• Si-E xit is enabled if place Si contains a token “d o t” and a token “e ” repre­

senting an event instance e. When it fires, a token “s1s 2___ s n ” is output to

place s1 where for any i = 2 , . . . , n, sl G children's1-1) A sn = s^ A (3states' :

si G ch ild ren s ') A s1 G children(s')).

As we said before, a transition t : Si s2 can be a cross transition and a group

transition simultaneously. Thus t can be one of the following cases:

• children(si) 0 and s is the outermost target cover state of transition t: Such

case can be solved by applying Group Transition Leaving Rule, then Cross

Transition Entering Rule;

• children(si) 0 and s is the outermost source cover state of transition t: This

case can be solved by applying Group Transition Leaving Rule first. Then

treating Si as a simple state and apply Cross Transition Leaving Rule;

• children{sfi) 0 and s is the outermost source cover state of transition t: Such

case can be solved by applying Cross Transition Leaving Rule, then Group

Transition Entering Rule;

• children(s2) 0 and s is the outermost target cover state of transition t.

Such case can be solved by applying Cross Transition Entering Rule with a

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

minor modification: when Si-E xit is fired, a token “s°_s1_s2__ sn” such that

s° = s A Vi = 1, . . . , n : sl G ch ild ren^1”1) A sn = s2, is output to s.

C.4.4 C o m p o u n d T ran s itio n

A transition connects two state vertices, but maybe one or both state vertices are

transient pseudostates. These transient state vertexes include fork, join, junction,

and choice, and history formalized in Sec. C.3.3.

A compound transition consists of multiple sets of transitions that should be fired

sequentially. If a set of transitions of a compound transition is fired, it is guaran­

teed that the next set of transitions should be fired since a state machine cannot be

’’stuck” at some transient state vertices. Such situations are hard to formalize since

HPrTNs cannot predicate if a transition is enabled. However, some simple compound

transitions are easy to handle.

Unlike the classic Statechart, some constraints are imposed on the compound tran­

sitions in state machines for practical reasons. Some of them affecting our derivations

are listed below:

• If the source state vertex of a transition is a fork pseudostate, then the target

state vertex must be a state and the transition cannot have guards and triggers;

• If the target state vertex of a transition is a join pseudostate, the source state

vertex must be a state and the transition cannot have guards and triggers.

The transition cannot have triggers if the source state vertices are pseudostates.

R ule 9 (C o m p o u n d T ransition : Jo in) Let a set of states s i , . . . , sm be concurrent

3. For each state Si, there is a transition U: ——l—> s from Si to the same join

pseudostate s. And there is a transition t: s — s' . Assume transitions t i , . . . , t m

3 A set of states is concurrent if and only if any two of them are not ancestrally related and they
can appear in a state configuration.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

dot' dots_Exit k

NULLs_ExitReq

dot'dot1

NULL

NULL
s_Abort's_Abort'

s !_Exit +"dot'

Figure 32: The Formalization of a Compound Transition(Join)

share an outermost source cover state s0SC 4. Thus, this compound transition can be

handled in the following way:

• Transitions t i , . . . , tm are represented by a group transition: t ' : sosc —

s Thus, we apply the Group Transition Rules on t '.

• Pseudostate s is treated as a simple state. Thus Simple State Rule is applied;

• Applying appropriate rules to the transition t.

Fig. 32 delineates the statechart diagram and corresponding HPrTN by applying

Compound Transition Join Rule.

However, we have to guarantee that when soscJSroup is enabled, state sj , . . . , sn is

active. This can be done by obtaining current state configuration from place Current,

which is explained in next section.

A compound transition can be enabled only if a state machine can leave a state

configuration and enter another state configuration. In other words, a state machine

4If they do not share an outermost source cover state, there is a transition among them such that
its source and target states are concurrent. Such a transition is not structured, and not encouraqed
in UML.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

cannot be stuck in a pseudostate. To justify whether a compound transition is enabled

or not, all the guard conditions along a compound transition should be evaluated at

the beginning. Thus the guard c is evaluated in transition soscJGlroup. However,

when a state machine enters into a pseudostate, it may execute some actions (in this

case, it is ax, . . . , am) that change the truth value of guard c. In order to find such

exception, the guard c is reevaluated in s-E xit.

Rule 10 (C om pound Transition:Fork) Let a set of states s i , . . . , s m be concur­

rent. For each state s^, there is a transition L: s —%■ where s is a fork pseudostate.

And there is a transition t: s' .s , where s' is a state vertex. Such case can be

handled in the following ways:

• Fork pseudostate s is treated as a simple state and Simple State Rule is applied;

• Applying appropriate rules to transition t;

• Transitions t \ , . . . , tm are represented by a enabling condition of transition

S-Exit. s -E x it is enabled if place s contains a token. When it fires, it out­

puts appropriate tokens to each place Si according to corresponding entering

rules.

Rule 11 (C om pound Transition:Junction) Let s i , . . . , s m be a set of states; s a

junction pseudostate and s ^ , . . . , ^ a set of states. There are transitions such that
. /. /

£j.- Si e%'iC%̂aLf s , i = 1, . . . ,m ; and transitions such that s —L.fL> s[i — 1,, k.

Such case can be formalized in the following ways:

• Junction pseudostate s is treated as a simple state and Simple State Rule is

applied;

• Applying appropriate rules to each transition t f i = 1, . . . ,m) and tf-(j =

1 , . . . , k) .

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In order to avoid that a state machine is stuck in a junction pseudostate, the guard

of Si-Exit is changed to Cj A (c[V ... V c'k) to delineate the enabling condition of the

compound transition. However, a state machine can also be stuck in pseudostate s

if action a* affects the evaluation of the following conditions. In such case, place s

contains a token that cannot be consumed.

R ule 12 (C o m p o u n d T ransition :C ho ice) Let be a set of states; s a

state and s' a choice pseudostate. There are atransitions such that ti'. s' ;

i = 1, . . . ,m ; and a transition t: s —<̂ lll—» s ' . Such case can be formalized in the

following ways:

• Choice pseudostate s is treated as a simple state and Simple State Rule is ap­

plied;

• Applying appropriate rules to each transition = 1, . . . ,m) and t.

As the same reason explained in join and junction rules, the guard of Si-Exit is

changed to c A (ci V ... V cm).

A simple compound transition can be formalized using the above rules. For the

complicated compound transitions that contain two or more pseudostates, we have

to calculate the enabling condition at the beginning. Such calculation can be found

in [65].

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

VITA

ZHIJIANG DONG

April 20, 1973 Born, P.R.China

1990-1994 B.S., Applied Mathematics
Huazhong University of Science and Technology
Wuhan, P.R.China

1994-1997 M.S., Computer Science
Huazhong University of Science and Technology
Wuhan, P.R.China

1998-1999 Software Engineer
Everbright Securities, Ltd., Co.
Shenzhen, P.R.China

2000-2006 Doctoral Candidate in Computer Science
Florida International University
Miami, Florida

Teaching Assistant
School of Computing and Information Sciences
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Z. Dong, Y. Fu, and X. He. A Framework for Component-based System Modeling in
the 18th International Conference on Software Engineering and Knowledge Engineer­
ing. San Francisco Bay, USA, July 5 - 7, 2006.

Z. Dong, Y. Fu, and X. He. UML Consistency Checking Through Transformation
based Petri Net Framework in the workshop of Consistency in Model Driven En­
gineering (CoMoDE), in conjunction with European Conference on Model Driven
Architecture, Nuremberg, Germany. November 7 - 10th, 2005.

Z. Dong, Y. Fu, and X. He. An Integrated Runtime Monitoring Framework for Soft­
ware Architecture Model Verification in the 9th IASTED International Conference on
Software Engineering and Applications. Phoenix AZ, USA. November 14 - 16, 2005.

Z. Dong, Y. Fu, and X. He. Automated Runtime Validation of Software Architecture
Design. Lecture Notes in Computer Science, vol. 3816, pages 446 - 457. 2nd Interna­
tional Conference on Distributed Computing Sz Internet Technology. Bhubaneswar,
India. December 22 - 24, 2005.

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Z. Dong, Y. Fu, and X. He. Deriving Hierarchical Predicate/Transition Nets from
Statechart Diagrams. In proceedings of the 15th International Conference on Software
Engineering and Knowledge Engineering, pages 150 - 157. San Francisco CA, U.S.A.
July 1 - 3, 2003.

Z. Dong and X. He. Integrating UML State-chart and Collaboration Diagrams Using
Hierarchical Predicate Transition Nets. Lecture Notes in Informatics, vol. P-7, pages
99 - 112. 2001.

Y. Fu, Z. Dong, X. He. Modeling, Validating and Automating Composition of Web
Services in the 2006 IEEE International Conference on Web Engineering (ICWE
2006), California, 2006.

Y. Fu, Z. Dong, X. He. Formalizing and Validating UML Architecture Descriptions
of Web Systems in the Workshop on Model-Driven Web Engineering, in conjunction
with ICWE 2006, California, July 11, 2006.

Y. Fu, Z. Dong, X. He. An Approach to Web Services Oriented Modeling and Valida­
tion in the 2006 International Workshop on Service Oriented Software Engineering,
in conjunction with International Conference on Software Engineering (ICSE’06).
Shanghai, China, May 27-28, 2006.

Y. Fu, Z. Dong, and X. He. An Approach to Validation of Software Architecture Model
in the 12th Asia-Pacific Software Engineering Conference, Taipei, Taiwan. December
15 - 17, 2005.

Y. Fu, Z. Dong, and X. He. A Methodology of Automated Realization of a Software
Architecture Design. In proceedings of 17th International Conference on Software
Engineering and Knowledge Engineering, pages 412 - 417. Taipei, Taiwan. July 14
- 16, 2005.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

